Mathematical and Numerical Foundations of Turbulence Models and Applications

With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Chacón Rebollo, Tomás (Συγγραφέας), Lewandowski, Roger (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Birkhäuser, 2014.
Σειρά:Modeling and Simulation in Science, Engineering and Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03699nam a22005535i 4500
001 978-1-4939-0455-6
003 DE-He213
005 20151204171627.0
007 cr nn 008mamaa
008 140617s2014 xxu| s |||| 0|eng d
020 |a 9781493904556  |9 978-1-4939-0455-6 
024 7 |a 10.1007/978-1-4939-0455-6  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Chacón Rebollo, Tomás.  |e author. 
245 1 0 |a Mathematical and Numerical Foundations of Turbulence Models and Applications  |h [electronic resource] /  |c by Tomás Chacón Rebollo, Roger Lewandowski. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a XVII, 517 p. 18 illus., 9 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Modeling and Simulation in Science, Engineering and Technology,  |x 2164-3679 
505 0 |a Introduction -- Incompressible Navier-Stokes Equations -- Mathematical Basis of Turbulence Modeling -- The k – ε Model -- Laws of the Turbulence by Similarity Principles -- Steady Navier-Stokes Equations with Wall Laws and Fixed Eddy Viscosities -- Analysis of the Continuous Steady NS-TKE Model -- Evolutionary NS-TKE Model -- Finite Element Approximation of Steady Smagorinsky Model -- Finite Element Approximation of Evolution Smagorinsky Model -- A Projection-based Variational Multi-Scale Model -- Numerical Approximation of NS-TKE Model -- Numerical Experiments -- Appendix A: Tool Box. 
520 |a With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering, and computer science. Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation, and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows. Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics, engineers, physical oceanographers, meteorologists, and climatologists. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Numerical analysis. 
650 0 |a Fluids. 
650 0 |a Fluid mechanics. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Engineering Fluid Dynamics. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Fluid- and Aerodynamics. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Lewandowski, Roger.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493904549 
830 0 |a Modeling and Simulation in Science, Engineering and Technology,  |x 2164-3679 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-0455-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)