Linear Network Error Correction Coding

There are two main approaches in the theory of network error correction coding. In this SpringerBrief, the authors summarize some of the most important contributions following the classic approach, which represents messages by sequences similar to algebraic coding, and also briefly discuss the main...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Guang, Xuan (Συγγραφέας), Zhang, Zhen (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2014.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03777nam a22004695i 4500
001 978-1-4939-0588-1
003 DE-He213
005 20151204173438.0
007 cr nn 008mamaa
008 140321s2014 xxu| s |||| 0|eng d
020 |a 9781493905881  |9 978-1-4939-0588-1 
024 7 |a 10.1007/978-1-4939-0588-1  |2 doi 
040 |d GrThAP 
050 4 |a TK5105.5-5105.9 
072 7 |a UKN  |2 bicssc 
072 7 |a COM075000  |2 bisacsh 
082 0 4 |a 004.6  |2 23 
100 1 |a Guang, Xuan.  |e author. 
245 1 0 |a Linear Network Error Correction Coding  |h [electronic resource] /  |c by Xuan Guang, Zhen Zhang. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a VI, 107 p. 9 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 |a Introduction -- Network Error Correction Model -- Another Description of Linear Network Error Correction Model -- Coding Bounds of Linear Network Error Correction Codes -- Random Linear Network Error Correction Coding -- Subspace Codes. 
520 |a There are two main approaches in the theory of network error correction coding. In this SpringerBrief, the authors summarize some of the most important contributions following the classic approach, which represents messages by sequences similar to algebraic coding, and also briefly discuss the main results following the other approach, that uses the theory of rank metric codes for network error correction of representing messages by subspaces. This book starts by establishing the basic linear network error correction (LNEC) model and then characterizes two equivalent descriptions. Distances and weights are defined in order to characterize the discrepancy of these two vectors and to measure the seriousness of errors. Similar to classical error-correcting codes, the authors also apply the minimum distance decoding principle to LNEC codes at each sink node, but use distinct distances. For this decoding principle, it is shown that the minimum distance of a LNEC code at each sink node can fully characterize its error-detecting, error-correcting and erasure-error-correcting capabilities with respect to the sink node. In addition, some important and useful coding bounds in classical coding theory are generalized to linear network error correction coding, including the Hamming bound, the Gilbert-Varshamov bound and the Singleton bound. Several constructive algorithms of LNEC codes are presented, particularly for LNEC MDS codes, along with an analysis of their performance. Random linear network error correction coding is feasible for noncoherent networks with errors. Its performance is investigated by estimating upper bounds on some failure probabilities by analyzing the information transmission and error correction. Finally, the basic theory of subspace codes is introduced including the encoding and decoding principle as well as the channel model, the bounds on subspace codes, code construction and decoding algorithms. 
650 0 |a Computer science. 
650 0 |a Computer communication systems. 
650 0 |a Coding theory. 
650 1 4 |a Computer Science. 
650 2 4 |a Computer Communication Networks. 
650 2 4 |a Coding and Information Theory. 
700 1 |a Zhang, Zhen.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493905874 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-0588-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)