Marginal Space Learning for Medical Image Analysis Efficient Detection and Segmentation of Anatomical Structures /

Automatic detection and segmentation of anatomical structures in medical images are prerequisites to subsequent image measurements and disease quantification, and therefore have multiple clinical applications. This book presents an efficient object detection and segmentation framework, called Margin...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Zheng, Yefeng (Συγγραφέας), Comaniciu, Dorin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03038nam a22004935i 4500
001 978-1-4939-0600-0
003 DE-He213
005 20151204144827.0
007 cr nn 008mamaa
008 140416s2014 xxu| s |||| 0|eng d
020 |a 9781493906000  |9 978-1-4939-0600-0 
024 7 |a 10.1007/978-1-4939-0600-0  |2 doi 
040 |d GrThAP 
050 4 |a T385 
050 4 |a TA1637-1638 
050 4 |a TK7882.P3 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.6  |2 23 
100 1 |a Zheng, Yefeng.  |e author. 
245 1 0 |a Marginal Space Learning for Medical Image Analysis  |h [electronic resource] :  |b Efficient Detection and Segmentation of Anatomical Structures /  |c by Yefeng Zheng, Dorin Comaniciu. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a XX, 268 p. 122 illus., 58 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Marginal Space Learning -- Comparison of Marginal Space Learning and Full Space Learning in 2D -- Constrained Marginal Space Learning -- Part-Based Object Detection and Segmentation -- Optimal Mean Shape for Nonrigid Object Detection and Segmentation -- Nonrigid Object Segmentation: Application to Four-Chamber Heart Segmentation -- Applications of Marginal Space Learning in Medical Imaging -- Conclusions and Future Work. 
520 |a Automatic detection and segmentation of anatomical structures in medical images are prerequisites to subsequent image measurements and disease quantification, and therefore have multiple clinical applications. This book presents an efficient object detection and segmentation framework, called Marginal Space Learning, which runs at a sub-second speed on a current desktop computer, faster than the state-of-the-art. Trained with a sufficient number of data sets, Marginal Space Learning is also robust under imaging artifacts, noise and anatomical variations. The book showcases 35 clinical applications of Marginal Space Learning and its extensions to detecting and segmenting various anatomical structures, such as the heart, liver, lymph nodes and prostate in major medical imaging modalities (CT, MRI, X-Ray and Ultrasound), demonstrating its efficiency and robustness. 
650 0 |a Computer science. 
650 0 |a Radiology. 
650 0 |a Artificial intelligence. 
650 0 |a Computer graphics. 
650 1 4 |a Computer Science. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
650 2 4 |a Imaging / Radiology. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Comaniciu, Dorin.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493905997 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-0600-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)