Connections Between Algebra, Combinatorics, and Geometry
Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra, Combinatorics, and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Alg...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York : Imprint: Springer,
2014.
|
Σειρά: | Springer Proceedings in Mathematics & Statistics,
76 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Preface
- Differential Graded Commutative Algebra
- Secant Varieties
- Fat Points and Symbolic Powers
- An Introduction to Stanley-Reisner Rings
- Combinatorial Resolutions
- Geometric Properties of the Tor Algebra Structure for Trivariate Monomial Ideals
- Interactions Between Linear Algebra and Algebraic Geometry
- Fat Points
- Primary Decomposition of Certain Permanental Ideals.