k-Schur Functions and Affine Schubert Calculus

This book gives an introduction to the very active field of combinatorics of affine Schubert calculus, explains the current state of the art, and states the current open problems. Affine Schubert calculus lies at the crossroads of combinatorics, geometry, and representation theory. Its modern develo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Lam, Thomas (Συγγραφέας), Lapointe, Luc (Συγγραφέας), Morse, Jennifer (Συγγραφέας), Schilling, Anne (Συγγραφέας), Shimozono, Mark (Συγγραφέας), Zabrocki, Mike (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2014.
Σειρά:Fields Institute Monographs, 33
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03052nam a22005415i 4500
001 978-1-4939-0682-6
003 DE-He213
005 20151204152808.0
007 cr nn 008mamaa
008 140605s2014 xxu| s |||| 0|eng d
020 |a 9781493906826  |9 978-1-4939-0682-6 
024 7 |a 10.1007/978-1-4939-0682-6  |2 doi 
040 |d GrThAP 
050 4 |a QA164-167.2 
072 7 |a PBV  |2 bicssc 
072 7 |a MAT036000  |2 bisacsh 
082 0 4 |a 511.6  |2 23 
100 1 |a Lam, Thomas.  |e author. 
245 1 0 |a k-Schur Functions and Affine Schubert Calculus  |h [electronic resource] /  |c by Thomas Lam, Luc Lapointe, Jennifer Morse, Anne Schilling, Mark Shimozono, Mike Zabrocki. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a VIII, 219 p. 126 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Fields Institute Monographs,  |x 1069-5273 ;  |v 33 
505 0 |a 1. Introduction -- 2. Primer on k-Schur Functions -- 3. Stanley symmetric functions and Peterson algebras -- 4. Affine Schubert calculus. 
520 |a This book gives an introduction to the very active field of combinatorics of affine Schubert calculus, explains the current state of the art, and states the current open problems. Affine Schubert calculus lies at the crossroads of combinatorics, geometry, and representation theory. Its modern development is motivated by two seemingly unrelated directions. One is the introduction of k-Schur functions in the study of Macdonald polynomial positivity, a mostly combinatorial branch of symmetric function theory. The other direction is the study of the Schubert bases of the (co)homology of the affine Grassmannian, an algebro-topological formulation of a problem in enumerative geometry. This is the first introductory text on this subject. It contains many examples in Sage, a free open source general purpose mathematical software system, to entice the reader to investigate the open problems. This book is written for advanced undergraduate and graduate students, as well as researchers, who want to become familiar with this fascinating new field. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Algebraic topology. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Combinatorics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Algebraic Topology. 
700 1 |a Lapointe, Luc.  |e author. 
700 1 |a Morse, Jennifer.  |e author. 
700 1 |a Schilling, Anne.  |e author. 
700 1 |a Shimozono, Mark.  |e author. 
700 1 |a Zabrocki, Mike.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493906819 
830 0 |a Fields Institute Monographs,  |x 1069-5273 ;  |v 33 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-0682-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)