Statistical Analysis of Network Data with R

Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back cent...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kolaczyk, Eric D. (Συγγραφέας), Csárdi, Gábor (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2014.
Σειρά:Use R!, 65
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02811nam a22005295i 4500
001 978-1-4939-0983-4
003 DE-He213
005 20151204141227.0
007 cr nn 008mamaa
008 140522s2014 xxu| s |||| 0|eng d
020 |a 9781493909834  |9 978-1-4939-0983-4 
024 7 |a 10.1007/978-1-4939-0983-4  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a UFM  |2 bicssc 
072 7 |a COM077000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Kolaczyk, Eric D.  |e author. 
245 1 0 |a Statistical Analysis of Network Data with R  |h [electronic resource] /  |c by Eric D. Kolaczyk, Gábor Csárdi. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a XIII, 207 p. 55 illus., 53 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Use R!,  |x 2197-5736 ;  |v 65 
520 |a Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009). 
650 0 |a Statistics. 
650 0 |a Bioinformatics. 
650 0 |a System theory. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Complex Systems. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Computational Biology/Bioinformatics. 
700 1 |a Csárdi, Gábor.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493909827 
830 0 |a Use R!,  |x 2197-5736 ;  |v 65 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-0983-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)