Stochastic Optimization in Insurance A Dynamic Programming Approach /

The main purpose of the book is to show how a viscosity approach can be used to tackle control problems in insurance. The problems covered are the maximization of survival probability as well as the maximization of dividends in the classical collective risk model. The authors consider the possibilit...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Azcue, Pablo (Συγγραφέας), Muler, Nora (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2014.
Σειρά:SpringerBriefs in Quantitative Finance,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02973nam a22005055i 4500
001 978-1-4939-0995-7
003 DE-He213
005 20151103121502.0
007 cr nn 008mamaa
008 140619s2014 xxu| s |||| 0|eng d
020 |a 9781493909957  |9 978-1-4939-0995-7 
024 7 |a 10.1007/978-1-4939-0995-7  |2 doi 
040 |d GrThAP 
050 4 |a HB135-147 
072 7 |a KF  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a BUS027000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Azcue, Pablo.  |e author. 
245 1 0 |a Stochastic Optimization in Insurance  |h [electronic resource] :  |b A Dynamic Programming Approach /  |c by Pablo Azcue, Nora Muler. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a X, 146 p. 19 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Quantitative Finance,  |x 2192-7006 
505 0 |a Stability Criteria for Insurance Companies -- Reinsurance and Investment -- Viscosity Solutions -- Characterization of Value Functions -- Optimal Strategies -- Numerical Examples -- References -- Appendix A. Probability Theory and Stochastic Processes -- Index. 
520 |a The main purpose of the book is to show how a viscosity approach can be used to tackle control problems in insurance. The problems covered are the maximization of survival probability as well as the maximization of dividends in the classical collective risk model. The authors consider the possibility of controlling the risk process by reinsurance as well as by investments. They show that optimal value functions are characterized as either the unique or the smallest viscosity solution of the associated Hamilton-Jacobi-Bellman equation; they also study the structure of the optimal strategies and show how to find them. The viscosity approach was widely used in control problems related to mathematical finance but until quite recently it was not used to solve control problems related to actuarial mathematical science. This book is designed to familiarize the reader on how to use this approach. The intended audience is graduate students as well as researchers in this area. 
650 0 |a Mathematics. 
650 0 |a Insurance. 
650 0 |a Economics, Mathematical. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Quantitative Finance. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Insurance. 
700 1 |a Muler, Nora.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493909940 
830 0 |a SpringerBriefs in Quantitative Finance,  |x 2192-7006 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-0995-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)