Modern Fourier Analysis

This text is addressed to graduate students in mathematics and to interested researchers who wish to acquire an in depth understanding of Euclidean Harmonic analysis. The text covers modern topics and techniques in function spaces, atomic decompositions, singular integrals of nonconvolution type, an...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Grafakos, Loukas (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2014.
Έκδοση:3rd ed. 2014.
Σειρά:Graduate Texts in Mathematics, 250
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03730nam a22004935i 4500
001 978-1-4939-1230-8
003 DE-He213
005 20170228143022.0
007 cr nn 008mamaa
008 141113s2014 xxu| s |||| 0|eng d
020 |a 9781493912308  |9 978-1-4939-1230-8 
024 7 |a 10.1007/978-1-4939-1230-8  |2 doi 
040 |d GrThAP 
050 4 |a QA403.5-404.5 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.2433  |2 23 
100 1 |a Grafakos, Loukas.  |e author. 
245 1 0 |a Modern Fourier Analysis  |h [electronic resource] /  |c by Loukas Grafakos. 
250 |a 3rd ed. 2014. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a XVI, 624 p. 20 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 250 
505 0 |a Preface -- Smoothness and Function Spaces -- BMO and Carleson Measures -- Singular Integrals of Nonconvolution Type -- Weighted Inequalities -- Boundedness and Convergence of Fourier Integrals -- Time-Frequency Analysis and the Carleson-Hunt Theorem -- Multilinear Harmonic Analysis -- Glossary -- References -- Index. 
520 |a This text is addressed to graduate students in mathematics and to interested researchers who wish to acquire an in depth understanding of Euclidean Harmonic analysis. The text covers modern topics and techniques in function spaces, atomic decompositions, singular integrals of nonconvolution type, and the boundedness and convergence of Fourier series and integrals. The exposition and style are designed to stimulate further study and promote research. Historical information and references are included at the end of each chapter. This third edition includes a new chapter entitled "Multilinear Harmonic Analysis" which focuses on topics related to multilinear operators and their applications. Sections 1.1 and 1.2 are also new in this edition. Numerous corrections have been made to the text from the previous editions and several improvements have been incorporated, such as the adoption of clear and elegant statements. A few more exercises have been added with relevant hints when necessary. Reviews from the Second Edition: “The books cover a large amount of mathematics. They are certainly a valuable and useful addition to the existing literature and can serve as textbooks or as reference books. Students will especially appreciate the extensive collection of exercises.” —Andreas Seeger, Mathematical Reviews “The exercises at the end of each section supplement the material of the section nicely and provide a good chance to develop additional intuition and deeper comprehension. The historical notes in each chapter are intended to provide an account of past research as well as to suggest directions for further investigation. The volume is mainly addressed to graduate students who wish to study harmonic analysis.” —Leonid Golinskii, zbMATH. 
650 0 |a Mathematics. 
650 0 |a Harmonic analysis. 
650 0 |a Fourier analysis. 
650 0 |a Functional analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Functional Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493912292 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 250 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-1230-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)