Handbook of Functional Equations Functional Inequalities /

As Richard Bellman has so elegantly stated at the Second International Conference on General Inequalities (Oberwolfach, 1978), “There are three reasons for the study of inequalities: practical, theoretical, and aesthetic.” On the aesthetic aspects, he said, “As has been pointed out, beauty is in the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Rassias, Themistocles M. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2014.
Σειρά:Springer Optimization and Its Applications, 95
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05474nam a22005895i 4500
001 978-1-4939-1246-9
003 DE-He213
005 20151030061328.0
007 cr nn 008mamaa
008 141118s2014 xxu| s |||| 0|eng d
020 |a 9781493912469  |9 978-1-4939-1246-9 
024 7 |a 10.1007/978-1-4939-1246-9  |2 doi 
040 |d GrThAP 
050 4 |a QA431 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.625  |2 23 
082 0 4 |a 515.75  |2 23 
245 1 0 |a Handbook of Functional Equations  |h [electronic resource] :  |b Functional Inequalities /  |c edited by Themistocles M. Rassias. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a XI, 555 p. 19 illus., 7 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Optimization and Its Applications,  |x 1931-6828 ;  |v 95 
505 0 |a On a Relation Between the Hardy–Hilbert and the Gabriel Inequality (V. Adiyasunen, T. Batbold) -- Mathematical Models of Mechanical Fields in Media with Inclusions and Holes (M. Bryla, A.V. Krupoderov, A.A. Kushunin, V. Mityushev) -- A Note on the Functions that are Approximately p-Write Affine (J. Brzdek) -- Multiplicative Ostrowski and Trapezoid Inequalities (P. Cerone, S. Dragomir, E. Kikianty) -- A Survey on Ostrowski Type Inequalities for Riemann–Stieltjes Integral (W.S. Cheung, S.S. Dragomir) -- Invariance in the Family of Weighted Gini Means (I. Costin, G. Toader) -- Functional Inequalities and Analysis of Contagion in the Financial Networks (P. Daniele, S. Giuffe,k M. Lorino, A. Maugeri, C. Mirabella) -- Comparisons of Means and Related Functional Inequalities (W. Fechner) -- Constructions and Extensions of Free and Controlled Additive Relations (T. Glavosits, A. Szaz) -- Extremal Problems in Polynomials and Entire Functions (N.K. Govil, Q. M. Tariq) -- On Approximation Properties of Szasz–Mirakyan Operators (V. Gupta) -- Generalized Hardy–Hilbert Type Inequalities on Multiple Weighted Orlicz Spaces (K. Jichang) -- Inequalities for the Fisher's Information Measures (C.P. Kitsos, T.L. Toulias) -- Applications of Functional Equations to Dirichlet Problem for Double Connected Domains (V. Mityushev) -- Sign-Changing Solutions for Nonlinear Elliptic Problems Depending on Parameters (D. Motreanu, V.V. Motreanu) -- On Strongly Convex Functions and Related Classes of Functions (K. Nikodem) -- Some New Algorithms for Solving General Equilibrium Problems (M.A. Noor, Th.M. Rassias) -- Contractive Operators in Relational Metric Spaces (M. Turinici) -- Half-Discrete Hilbert-Type Inequalities, Operators, and Compositions (B. Yang) -- Some Results Concerning Hardy and Hardy-Type Inequalities (N.B. Zographopoulos). 
520 |a As Richard Bellman has so elegantly stated at the Second International Conference on General Inequalities (Oberwolfach, 1978), “There are three reasons for the study of inequalities: practical, theoretical, and aesthetic.” On the aesthetic aspects, he said, “As has been pointed out, beauty is in the eye of the beholder. However, it is generally agreed that certain pieces of music, art, or mathematics are beautiful. There is an elegance to inequalities that makes them very attractive.” The content of the Handbook focuses mainly on both old and recent developments on approximate homomorphisms, on a relation between the Hardy–Hilbert and the Gabriel inequality, generalized Hardy–Hilbert type inequalities on multiple weighted Orlicz spaces, half-discrete Hilbert-type inequalities, on affine mappings, on contractive operators, on multiplicative Ostrowski and trapezoid inequalities, Ostrowski type inequalities for the  Riemann–Stieltjes integral, means and related functional inequalities, Weighted Gini means, controlled additive relations, Szasz–Mirakyan operators,  extremal problems in polynomials and entire functions,  applications of functional equations to Dirichlet problem for doubly connected domains, nonlinear elliptic problems depending on parameters, on strongly convex functions, as well as applications to some new algorithms for solving general equilibrium problems, inequalities for the Fisher’s information measures, financial networks, mathematical models of  mechanical fields in media with inclusions and holes.  . 
650 0 |a Mathematics. 
650 0 |a Difference equations. 
650 0 |a Functional equations. 
650 0 |a Functional analysis. 
650 0 |a Special functions. 
650 0 |a Mathematical optimization. 
650 0 |a Physics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Difference and Functional Equations. 
650 2 4 |a Optimization. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Special Functions. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Mathematical Methods in Physics. 
700 1 |a Rassias, Themistocles M.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493912452 
830 0 |a Springer Optimization and Its Applications,  |x 1931-6828 ;  |v 95 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-1246-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)