The Corona Problem Connections Between Operator Theory, Function Theory, and Geometry /
The purpose of the corona workshop was to consider the corona problem in both one and several complex variables, both in the context of function theory and harmonic analysis as well as the context of operator theory and functional analysis. It was held in June 2012 at the Fields Institute in Toronto...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , , , , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York : Imprint: Springer,
2014.
|
Σειρά: | Fields Institute Communications,
72 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- The History of the Corona Problem (R.G. Douglas, S.G. Krantz, E.T. Sawyer, S. Treil, B.D. Wick)
- Corona Problem for H^\infty on Riemann Surfaces (A. Brudnyi)
- Connections of the Corona Problem with Operator Theory and Complex Geometry (R.G. Douglas)
- On the Maximal Ideal Space of a Sarason-Type Algebra on the Unit Ball (J. Eschmeier)
- A Subalgebra of the Hardy Algebra Relevant in Control Theory and its Algebraic-Analytic Properties (M. Frentz, A. Sasane)
- The Corona Problem in Several Complex Variables (S.G. Krantz)
- Corona-Type Theorems and Division in Some Function Algebras on Planar Domains (R. Mortini, R. Rupp)
- The Ring of Real-Valued Multivariate Polynomials: An Analyst's Perspective (R. Mortini, R. Rupp)
- Structure in the Spectra of Some Multiplier Algebras (R. Rochberg)
- Corona Solutions Depending Smoothly on Corona Data (S. Treil, B.D. Wick)
- On the Taylor Spectrum of M-Tuples of Analytic Toeplitz Operators on the Polydisk (T.T. Trent).