Symmetry: Representation Theory and Its Applications In Honor of Nolan R. Wallach /

Symmetry has served as an organizing principle in Nolan R. Wallach's fundamental contributions to representation theory, harmonic analysis, algebraic geometry, combinatorics, number theory, differential equations, Riemannian geometry, ring theory, and quantum information theory. This volume is...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Howe, Roger (Επιμελητής έκδοσης), Hunziker, Markus (Επιμελητής έκδοσης), Willenbring, Jeb F. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Birkhäuser, 2014.
Σειρά:Progress in Mathematics, 257
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04531nam a22006255i 4500
001 978-1-4939-1590-3
003 DE-He213
005 20151029211937.0
007 cr nn 008mamaa
008 150103s2014 xxu| s |||| 0|eng d
020 |a 9781493915903  |9 978-1-4939-1590-3 
024 7 |a 10.1007/978-1-4939-1590-3  |2 doi 
040 |d GrThAP 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
245 1 0 |a Symmetry: Representation Theory and Its Applications  |h [electronic resource] :  |b In Honor of Nolan R. Wallach /  |c edited by Roger Howe, Markus Hunziker, Jeb F. Willenbring. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a XXVIII, 538 p. 58 illus., 5 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 0743-1643 ;  |v 257 
505 0 |a Preface -- Publications of Nolan R. Wallach -- Unitary Hecke algebra modules with nonzero Dirac cohomology -- On the nilradical of a parabolic subgroup -- Arithmetic invariant theory -- Structure constants of Kac-Moody Lie algebras -- The Gelfand-Zeitlin integrable system and K-orbits on the flag variety -- Diagrams of Hermitian type, highest weight modules, and syzygies of determinantal varieties -- A conjecture of Sakellaridis-Venkatesh on the unitary spectrum of spherical varieties -- Proof of the 2-part compositional shuffle conjecture -- On symmetric SL-invariant polynomials in four qubits -- Finite maximal tori -- Sums of Littlewood–Richardson coefficients and GLn-harmonic polynomials -- Polynomial functors and categorifications of Fock space -- Pieri algebras and Hibi algebras in representation theory -- Action of the conformal group on steady state solutions to Maxwell’s equations and background radiation -- Representations with a reduced null cone -- M-series and Kloosterman–Selberg zetafunctions for R-rank one groups -- Ricci flow and manifolds with positive curvature -- Remainder formula and zeta expression for extremal CFT partition functions -- Principal series representations of infinite-dimensional Lie groups, I: Minimal parabolic subgroups. 
520 |a Symmetry has served as an organizing principle in Nolan R. Wallach's fundamental contributions to representation theory, harmonic analysis, algebraic geometry, combinatorics, number theory, differential equations, Riemannian geometry, ring theory, and quantum information theory. This volume is a collection of 19 invited articles that pay tribute to the breadth and depth of Wallach's work. The mostly expository articles are written by distinguished mathematicians and contain sufficient preliminary material so as to reach the widest possible audience. Graduate students, mathematicians, and physicists interested in representation theory and its applications will find many gems in this volume that have not appeared in print elsewhere. Contributors:   D. Barbasch K. Baur M. Bhargava B. Casselman D. Ciubotaru M. Colarusso T. J. Enright S. Evens W. T. Gan A. M. Garsia R. Gomez G. Gour B. H. Gross G. Han P. E. Harris J. Hong R. E. Howe     M. Hunziker B. Kostant H. Kraft R. J. Miatello L. Ni W. A. Pruett G. W. Schwarz A. Touzé D. A. Vogan N. R. Wallach J. F. Willenbring F. L. Williams J. A. Wolf G. Xin O. Yacobi M. Zabrocki. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Group theory. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Harmonic analysis. 
650 0 |a Number theory. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Number Theory. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Combinatorics. 
700 1 |a Howe, Roger.  |e editor. 
700 1 |a Hunziker, Markus.  |e editor. 
700 1 |a Willenbring, Jeb F.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493915897 
830 0 |a Progress in Mathematics,  |x 0743-1643 ;  |v 257 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-1590-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)