Fundamentals of Algebraic Topology

This rapid and concise presentation of the essential ideas and results of algebraic topology follows the axiomatic foundations pioneered by Eilenberg and Steenrod. The approach of the book is pragmatic: while most proofs are given, those that are particularly long or technical are omitted, and resul...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Weintraub, Steven H. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2014.
Σειρά:Graduate Texts in Mathematics, 270
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03002nam a22005055i 4500
001 978-1-4939-1844-7
003 DE-He213
005 20151103121242.0
007 cr nn 008mamaa
008 141031s2014 xxu| s |||| 0|eng d
020 |a 9781493918447  |9 978-1-4939-1844-7 
024 7 |a 10.1007/978-1-4939-1844-7  |2 doi 
040 |d GrThAP 
050 4 |a QA612-612.8 
072 7 |a PBPD  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514.2  |2 23 
100 1 |a Weintraub, Steven H.  |e author. 
245 1 0 |a Fundamentals of Algebraic Topology  |h [electronic resource] /  |c by Steven H. Weintraub. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a X, 163 p. 82 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 270 
505 0 |a Preface -- 1. The Basics -- 2. The Fundamental Group -- 3. Generalized Homology Theory -- 4. Ordinary Homology Theory -- 5. Singular Homology Theory -- 6. Manifolds -- 7. Homotopy Theory -- 8. Homotopy Theory -- A. Elementary Homological Algebra -- B. Bilinear Forms.- C. Categories and Functors -- Bibliography -- Index. 
520 |a This rapid and concise presentation of the essential ideas and results of algebraic topology follows the axiomatic foundations pioneered by Eilenberg and Steenrod. The approach of the book is pragmatic: while most proofs are given, those that are particularly long or technical are omitted, and results are stated in a form that emphasizes practical use over maximal generality. Moreover, to better reveal the logical structure of the subject, the separate roles of algebra and topology are illuminated. Assuming a background in point-set topology, Fundamentals of Algebraic Topology covers the canon of a first-year graduate course in algebraic topology: the fundamental group and covering spaces, homology and cohomology, CW complexes and manifolds, and a short introduction to homotopy theory. Readers wishing to deepen their knowledge of algebraic topology beyond the fundamentals are guided by a short but carefully annotated bibliography. 
650 0 |a Mathematics. 
650 0 |a Category theory (Mathematics). 
650 0 |a Homological algebra. 
650 0 |a Algebraic topology. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Category Theory, Homological Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493918430 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 270 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-1844-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)