An Introductory Course in Functional Analysis

Based on a graduate course by the celebrated analyst Nigel Kalton, this well-balanced introduction to functional analysis makes clear not only how, but why, the field developed. All major topics belonging to a first course in functional analysis are covered. However, unlike traditional introductions...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bowers, Adam (Συγγραφέας), Kalton, Nigel J. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2014.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02744nam a22004455i 4500
001 978-1-4939-1945-1
003 DE-He213
005 20141211143839.0
007 cr nn 008mamaa
008 141211s2014 xxu| s |||| 0|eng d
020 |a 9781493919451  |9 978-1-4939-1945-1 
024 7 |a 10.1007/978-1-4939-1945-1  |2 doi 
040 |d GrThAP 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.7  |2 23 
100 1 |a Bowers, Adam.  |e author. 
245 1 3 |a An Introductory Course in Functional Analysis  |h [electronic resource] /  |c by Adam Bowers, Nigel J. Kalton. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a XVI, 232 p. 2 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Foreword -- Preface -- 1 Introduction.- 2 Classical Banach spaces and their duals -- 3 The Hahn–Banach theorems.- 4 Consequences of completeness -- 5 Consequences of convexity -- 6 Compact operators and Fredholm theory -- 7 Hilbert space theory -- 8 Banach algebras -- A Basics of measure theory -- B Results from other areas of mathematics -- References -- Index. 
520 |a Based on a graduate course by the celebrated analyst Nigel Kalton, this well-balanced introduction to functional analysis makes clear not only how, but why, the field developed. All major topics belonging to a first course in functional analysis are covered. However, unlike traditional introductions to the subject, Banach spaces are emphasized over Hilbert spaces, and many details are presented in a novel manner, such as the proof of the Hahn–Banach theorem based on an inf-convolution technique, the proof of Schauder's theorem, and the proof of the Milman–Pettis theorem. With the inclusion of many illustrative examples and exercises, An Introductory Course in Functional Analysis equips the reader to apply the theory and to master its subtleties. It is therefore well-suited as a textbook for a one- or two-semester introductory course in functional analysis or as a companion for independent study. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Functional Analysis. 
700 1 |a Kalton, Nigel J.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493919444 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-1945-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)