Real Analysis via Sequences and Series

This text gives a rigorous treatment of the foundations of calculus. In contrast to more traditional approaches, infinite sequences and series are placed at the forefront. The approach taken has not only the merit of simplicity, but students are well placed to understand and appreciate more sophisti...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Little, Charles H.C (Συγγραφέας), Teo, Kee L. (Συγγραφέας), van Brunt, Bruce (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2015.
Σειρά:Undergraduate Texts in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02827nam a22004935i 4500
001 978-1-4939-2651-0
003 DE-He213
005 20151116132647.0
007 cr nn 008mamaa
008 150528s2015 xxu| s |||| 0|eng d
020 |a 9781493926510  |9 978-1-4939-2651-0 
024 7 |a 10.1007/978-1-4939-2651-0  |2 doi 
040 |d GrThAP 
050 4 |a QA331.5 
072 7 |a PBKB  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.8  |2 23 
100 1 |a Little, Charles H.C.  |e author. 
245 1 0 |a Real Analysis via Sequences and Series  |h [electronic resource] /  |c by Charles H.C. Little, Kee L. Teo, Bruce van Brunt. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2015. 
300 |a XI, 476 p. 27 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
505 0 |a Preface -- 1. Introduction -- 2. Sequences -- 3. Series -- 4. Limits of Functions -- 5. Continuity -- 6. Differentiability -- 7. The Riemann Integral -- 8. Taylor Polynomials and Taylor Series -- 9. The Fixed Point Problem -- 10. Sequences of Functions -- Bibliography -- Index. 
520 |a This text gives a rigorous treatment of the foundations of calculus. In contrast to more traditional approaches, infinite sequences and series are placed at the forefront. The approach taken has not only the merit of simplicity, but students are well placed to understand and appreciate more sophisticated concepts in advanced mathematics. The authors mitigate potential difficulties in mastering the material by motivating  definitions, results, and proofs. Simple examples  are provided to  illustrate new material and exercises are included at the end of most sections. Noteworthy topics include: an extensive discussion of convergence tests for infinite series, Wallis’s formula and Stirling’s formula, proofs of the irrationality of π and e, and a treatment of Newton’s method as a special instance of finding fixed points of iterated functions. 
650 0 |a Mathematics. 
650 0 |a Functions of real variables. 
650 0 |a Sequences (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Real Functions. 
650 2 4 |a Sequences, Series, Summability. 
700 1 |a Teo, Kee L.  |e author. 
700 1 |a van Brunt, Bruce.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493926503 
830 0 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-2651-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)