Calabi-Yau Varieties: Arithmetic, Geometry and Physics Lecture Notes on Concentrated Graduate Courses /
This volume presents a lively introduction to the rapidly developing and vast research areas surrounding Calabi–Yau varieties and string theory. With its coverage of the various perspectives of a wide area of topics such as Hodge theory, Gross–Siebert program, moduli problems, toric approach, and ar...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York : Imprint: Springer,
2015.
|
Έκδοση: | 1st ed. 2015. |
Σειρά: | Fields Institute Monographs,
34 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- The Geometry and Moduli of K3 Surfaces (A. Harder, A. Thompson)
- Picard Ranks of K3 Surfaces of BHK Type (T. Kelly)
- Reflexive Polytopes and Lattice-Polarized K3 Surfaces (U. Whitcher)
- An Introduction to Hodge Theory (S.A. Filippini, H. Ruddat, A. Thompson)
- Introduction to Nonabelian Hodge Theory (A. Garcia-Raboso, S. Rayan)
- Algebraic and Arithmetic Properties of Period Maps (M. Kerr)
- Mirror Symmetry in Physics (C. Quigley)
- Introduction to Gromov–Witten Theory (S. Rose).- Introduction to Donaldson–Thomas and Stable Pair Invariants (M. van Garrel).- Donaldson–Thomas Invariants and Wall-Crossing Formulas (Y. Zhu).- Enumerative Aspects of the Gross–Siebert Program (M. van Garrel, D.P. Overholser, H. Ruddat).- Introduction to Modular Forms (S. Rose).- Lectures on Holomorphic Anomaly Equations (A. Kanazawa, J. Zhou)
- Polynomial Structure of Topological Partition Functions (J. Zhou).- Introduction to Arithmetic Mirror Symmetry (A. Perunicic).