Hamiltonian Partial Differential Equations and Applications

This book is a unique selection of work by world-class experts exploring the latest developments in Hamiltonian partial differential equations and their applications. Topics covered within are representative of the field’s wide scope, including KAM and normal form theories, perturbation and variatio...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Guyenne, Philippe (Επιμελητής έκδοσης), Nicholls, David (Επιμελητής έκδοσης), Sulem, Catherine (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Σειρά:Fields Institute Communications, 75
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04306nam a22005535i 4500
001 978-1-4939-2950-4
003 DE-He213
005 20151029200447.0
007 cr nn 008mamaa
008 150911s2015 xxu| s |||| 0|eng d
020 |a 9781493929504  |9 978-1-4939-2950-4 
024 7 |a 10.1007/978-1-4939-2950-4  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
245 1 0 |a Hamiltonian Partial Differential Equations and Applications  |h [electronic resource] /  |c edited by Philippe Guyenne, David Nicholls, Catherine Sulem. 
250 |a 1st ed. 2015. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2015. 
300 |a X, 449 p. 47 illus., 19 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Fields Institute Communications,  |x 1069-5265 ;  |v 75 
505 0 |a Hamiltonian Structure, Fluid Representation and Stability for the Vlasov–Dirac–Benney Equation (C. Bardos, N. Besse) -- Analysis of Enhanced Diffusion in Taylor Dispersion via a Model Problem (M. Beck, O. Chaudhary, C.E. Wayne) -- Normal Form Transformations for Capillary-Gravity Water Waves (W. Craig, C. Sulem) -- On a Fluid-Particle Interaction Model: Global in Time Weak Solutions Within a Moving Domain in R3 (S. Doboszczak, K. Trivisa) -- Envelope Equations for Three-Dimensional Gravity and Flexural-Gravity Waves Based on a Hamiltonian Approach (P. Guyenne) -- Dissipation of a Narrow-Banded Surface Water Waves (D. Henderson, G.K. Rajan, H. Segur).- The Kelvin–Helmholtz Instabilities in Two-Fluids Shallow Water Models (D. Lannes, M. Ming) -- Some Analytic Results on the FPU Paradox (D. Bambusi, A. Carati, A. Maiocchi, A. Maspero).- A Nash–Moser Approach to KAM Theory (M. Berti, P. Bolle).- On the Spectral and Orbital Stability of Spatially Periodic Stationary Solutions of Generalized Korteweg–de Vries Equations (T. Kapitula, B. Deconinck).- Time-Averaging for Weakly Nonlinear CGL Equations with Arbitrary Potentials (G. Huang, S. Kuksin, A. Maiocchi).- Partial Differential Equations with Random Noise in Inflationary Cosmology (R.H. Brandenberger).- Local Isometric Immersions of Pseudo-Spherical Surfaces and Evolution Equations (N. Kahouadji, N. Kamran, K. Tenenblat).- IST Versus PDE, A Comparative Study (C. Klein, J.-C. Saut). 
520 |a This book is a unique selection of work by world-class experts exploring the latest developments in Hamiltonian partial differential equations and their applications. Topics covered within are representative of the field’s wide scope, including KAM and normal form theories, perturbation and variational methods, integrable systems, stability of nonlinear solutions as well as applications to cosmology, fluid mechanics and water waves. The volume contains both surveys and original research papers and gives a concise overview of the above topics, with results ranging from mathematical modeling to rigorous analysis and numerical simulation. It will be of particular interest to graduate students as well as researchers in mathematics and physics, who wish to learn more about the powerful and elegant analytical techniques for Hamiltonian partial differential equations. 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Functional analysis. 
650 0 |a Partial differential equations. 
650 0 |a Gravitation. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Classical and Quantum Gravitation, Relativity Theory. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Functional Analysis. 
700 1 |a Guyenne, Philippe.  |e editor. 
700 1 |a Nicholls, David.  |e editor. 
700 1 |a Sulem, Catherine.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493929498 
830 0 |a Fields Institute Communications,  |x 1069-5265 ;  |v 75 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-2950-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)