Computing the Continuous Discretely Integer-Point Enumeration in Polyhedra /

This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is pe...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Beck, Matthias (Συγγραφέας), Robins, Sinai (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2015.
Σειρά:Undergraduate Texts in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04315nam a22005295i 4500
001 978-1-4939-2969-6
003 DE-He213
005 20151114095033.0
007 cr nn 008mamaa
008 151114s2015 xxu| s |||| 0|eng d
020 |a 9781493929696  |9 978-1-4939-2969-6 
024 7 |a 10.1007/978-1-4939-2969-6  |2 doi 
040 |d GrThAP 
050 4 |a QA164-167.2 
072 7 |a PBV  |2 bicssc 
072 7 |a MAT036000  |2 bisacsh 
082 0 4 |a 511.6  |2 23 
100 1 |a Beck, Matthias.  |e author. 
245 1 0 |a Computing the Continuous Discretely  |h [electronic resource] :  |b Integer-Point Enumeration in Polyhedra /  |c by Matthias Beck, Sinai Robins. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2015. 
300 |a XX, 285 p. 54 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
505 0 |a The Coin-Exchange Problem of Frobenius -- A Gallery of Discrete Volumes -- Counting Lattice Points in Polytopes: The Ehrhart Theory -- Reciprocity -- Face Numbers and the Dehn–Sommerville Relations in Ehrhartian Terms -- Magic Squares -- Finite Fourier Analysis -- Dedekind Sums -- Zonotopes -- h-Polynomials and h*-Polynomials -- The Decomposition of a Polytope Into Its Cones -- Euler–Maclaurin Summation in Rd -- Solid Angles -- A Discrete Version of Green's Theorem Using Elliptic Functions. 
520 |a This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is perfect for a capstone course, and adds two new chapters, many new exercises, and updated open problems. For scientists, this text can be utilized as a self-contained tooling device. The topics include a friendly invitation to Ehrhart’s theory of counting lattice points in polytopes, finite Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums, solid angles, Euler–Maclaurin summation for polytopes, computational geometry, magic squares, zonotopes, and more. With more than 300 exercises and open research problems, the reader is an active participant, carried through diverse but tightly woven mathematical fields that are inspired by an innocently elementary question: What are the relationships between the continuous volume of a polytope and its discrete volume? Reviews of the first edition: “You owe it to yourself to pick up a copy of Computing the Continuous Discretely to read about a number of interesting problems in geometry, number theory, and combinatorics.” — MAA Reviews “The book is written as an accessible and engaging textbook, with many examples, historical notes, pithy quotes, commentary integrating the mate rial, exercises, open problems and an extensive bibliography.” — Zentralblatt MATH “This beautiful book presents, at a level suitable for advanced undergraduates, a fairly complete introduction to the problem of counting lattice points inside a convex polyhedron.” — Mathematical Reviews “Many departments recognize the need for capstone courses in which graduating students can see the tools they have acquired come together in some satisfying way. Beck and Robins have written the perfect text for such a course.” — CHOICE. 
650 0 |a Mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Convex geometry. 
650 0 |a Discrete geometry. 
650 0 |a Number theory. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Combinatorics. 
650 2 4 |a Number Theory. 
650 2 4 |a Convex and Discrete Geometry. 
650 2 4 |a Computational Science and Engineering. 
700 1 |a Robins, Sinai.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493929689 
830 0 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-2969-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)