Optimal Control for Mathematical Models of Cancer Therapies An Application of Geometric Methods /

This book presents applications of geometric optimal control to real life biomedical problems with an emphasis on cancer treatments. A number of mathematical models for both classical and novel cancer treatments are presented as optimal control problems with the goal of constructing optimal protocol...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Schättler, Heinz (Συγγραφέας), Ledzewicz, Urszula (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Σειρά:Interdisciplinary Applied Mathematics, 42
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03577nam a22005775i 4500
001 978-1-4939-2972-6
003 DE-He213
005 20151204145513.0
007 cr nn 008mamaa
008 150915s2015 xxu| s |||| 0|eng d
020 |a 9781493929726  |9 978-1-4939-2972-6 
024 7 |a 10.1007/978-1-4939-2972-6  |2 doi 
040 |d GrThAP 
050 4 |a QA315-316 
050 4 |a QA402.3 
050 4 |a QA402.5-QA402.6 
072 7 |a PBKQ  |2 bicssc 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 |a Schättler, Heinz.  |e author. 
245 1 0 |a Optimal Control for Mathematical Models of Cancer Therapies  |h [electronic resource] :  |b An Application of Geometric Methods /  |c by Heinz Schättler, Urszula Ledzewicz. 
250 |a 1st ed. 2015. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2015. 
300 |a XIX, 496 p. 115 illus., 85 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Interdisciplinary Applied Mathematics,  |x 0939-6047 ;  |v 42 
505 0 |a Cancer and Tumor Development: Biomedical Background -- Cell-Cycle Specific Cancer Chemotherapy for Homogeneous Tumors -- Cancer Chemotherapy for Heterogeneous Tumor Cell Populations and Drug Resistance -- Optimal Control for Problems with a Quadratic Cost Functional on the Therapeutic Agents -- Optimal Control of Mathematical Models for Antiangiogenic Treatments -- Robust Suboptimal Treatment Protocols for Antiangiogenic Therapy -- Combination Therapies with Antiangiogenic Treatments -- Optimal Control for Mathematical Models of Tumor Immune System Interactions -- Concluding Remarks -- Appendices. 
520 |a This book presents applications of geometric optimal control to real life biomedical problems with an emphasis on cancer treatments. A number of mathematical models for both classical and novel cancer treatments are presented as optimal control problems with the goal of constructing optimal protocols. The power of geometric methods is illustrated with fully worked out complete global solutions to these mathematically challenging problems. Elaborate constructions of optimal controls and corresponding system responses provide great examples of applications of the tools of geometric optimal control and the outcomes aid the design of simpler, practically realizable suboptimal protocols. The book blends mathematical rigor with practically important topics in an easily readable tutorial style. Graduate students and researchers in science and engineering, particularly biomathematics and more mathematical aspects of biomedical engineering, would find this book particularly useful. 
650 0 |a Mathematics. 
650 0 |a Cancer research. 
650 0 |a Geometry. 
650 0 |a Calculus of variations. 
650 0 |a Control engineering. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Geometry. 
650 2 4 |a Control. 
650 2 4 |a Cancer Research. 
700 1 |a Ledzewicz, Urszula.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493929719 
830 0 |a Interdisciplinary Applied Mathematics,  |x 0939-6047 ;  |v 42 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-2972-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)