Nonholonomic Mechanics and Control

This book explores some of the connections between control theory and geometric mechanics; that is, control theory is linked with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations and in particular with the theory of mechanical systems subject to motion cons...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bloch, A.M (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Krishnaprasad, P. S. (Επιμελητής έκδοσης), Murray, R.M (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2015.
Σειρά:Interdisciplinary Applied Mathematics, 24
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04247nam a22006015i 4500
001 978-1-4939-3017-3
003 DE-He213
005 20160222163230.0
007 cr nn 008mamaa
008 151105s2015 xxu| s |||| 0|eng d
020 |a 9781493930173  |9 978-1-4939-3017-3 
024 7 |a 10.1007/978-1-4939-3017-3  |2 doi 
040 |d GrThAP 
050 4 |a Q295 
050 4 |a QA402.3-402.37 
072 7 |a GPFC  |2 bicssc 
072 7 |a SCI064000  |2 bisacsh 
072 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Bloch, A.M.  |e author. 
245 1 0 |a Nonholonomic Mechanics and Control  |h [electronic resource] /  |c by A.M. Bloch ; edited by P. S. Krishnaprasad, R.M. Murray. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2015. 
300 |a XXI, 565 p. 59 illus., 18 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Interdisciplinary Applied Mathematics,  |x 0939-6047 ;  |v 24 
505 0 |a Introduction -- Mathematical Preliminaries -- Basic Concepts in Geometric Mechanics -- Introduction to Aspects of Geometric Control Theory -- Nonholonomic Mechanics -- Control of Mechanical and Nonholonomic Systems -- Optimal Control -- Stability of Nonholonomic Systems -- Energy-Based Methods for Stabilization -- References -- Index. 
520 |a This book explores some of the connections between control theory and geometric mechanics; that is, control theory is linked with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations and in particular with the theory of mechanical systems subject to motion constraints. The synthesis of the topic is appropriate as there is a particularly rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems and illustrates the elegant mathematics behind many simple, interesting, and useful mechanical examples. It is intended for graduate students who wish to learn this subject and researchers in the area who want to enhance their techniques. The book contains sections focusing on physical examples and elementary terms, as well as theoretical sections that use sophisticated analysis and geometry. The first four chapters offer preliminaries and background information, while the remaining five are broken down into chapters on nonholonomic mechanics, control and stabilization, optimal control, energy-based, and recent energy-based techniques for mechanical and nonholonomic systems. The second edition of the book extends many of the topics discussed in the first edition to incorporate both new research and more historical background. The additional material includes work on the Hamel equations and quasivelocities, discrete dynamics, bo th holonomic and nonholonomic, Hamiltonization, and the Hamilton-Jacobi equation. In addition new examples and exercises have been added.   Review of earlier Edition (A.J. van der Schaft, IEEE Control System Magazine, 2005 ) This book can be read on many different levels and has been described as a “delightful book that will be valuable for both the control community and researchers” . 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a System theory. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 1 4 |a Mathematics. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Control, Robotics, Mechatronics. 
650 2 4 |a Theoretical and Applied Mechanics. 
700 1 |a Krishnaprasad, P. S.  |e editor. 
700 1 |a Murray, R.M.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493930166 
830 0 |a Interdisciplinary Applied Mathematics,  |x 0939-6047 ;  |v 24 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-3017-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)