Eulerian Numbers

This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytope...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Petersen, T. Kyle (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Birkhäuser, 2015.
Σειρά:Birkhäuser Advanced Texts Basler Lehrbücher,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03464nam a22005295i 4500
001 978-1-4939-3091-3
003 DE-He213
005 20151030091401.0
007 cr nn 008mamaa
008 151012s2015 xxu| s |||| 0|eng d
020 |a 9781493930913  |9 978-1-4939-3091-3 
024 7 |a 10.1007/978-1-4939-3091-3  |2 doi 
040 |d GrThAP 
050 4 |a QA164-167.2 
072 7 |a PBV  |2 bicssc 
072 7 |a MAT036000  |2 bisacsh 
082 0 4 |a 511.6  |2 23 
100 1 |a Petersen, T. Kyle.  |e author. 
245 1 0 |a Eulerian Numbers  |h [electronic resource] /  |c by T. Kyle Petersen. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Birkhäuser,  |c 2015. 
300 |a XVIII, 456 p. 78 illus., 4 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Birkhäuser Advanced Texts Basler Lehrbücher,  |x 1019-6242 
505 0 |a Eulerian Numbers -- Narayana Numbers -- Partially Ordered Sets -- Gamma-nonnegativity -- Weak Order, Hyperplane Arrangements, and the Tamari Lattice -- Refined Enumeration -- Simplicial Complexes -- Barycentric Subdivision -- Coxeter Groups -- W-Narayana Numbers -- Cubes, Carries, and an Amazing Matrix -- Characterizing f-vectors -- Combinatorics for Coxeter groups of Types Bn and Dn -- Affine Descents and the Steinberg Torus -- Hints and Solutions. 
520 |a This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytopes, and simplicial complexes. Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group. The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers. Again there is a progression from combinatorics to geometry, including discussion of the associahedron and the lattice of noncrossing partitions. The final chapters discuss how both the Eulerian and Narayana numbers have analogues in any finite Coxeter group, with many of the same enumerative and geometric properties. There are four supplemental chapters throughout, which survey more advanced topics, including some open problems in combinatorial topology. This textbook will serve a resource for experts in the field as well as for graduate students and others hoping to learn about these topics for the first time. 
650 0 |a Mathematics. 
650 0 |a Group theory. 
650 0 |a Number theory. 
650 0 |a Topology. 
650 0 |a Discrete mathematics. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Combinatorics. 
650 2 4 |a Topology. 
650 2 4 |a Number Theory. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Discrete Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493930906 
830 0 |a Birkhäuser Advanced Texts Basler Lehrbücher,  |x 1019-6242 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-3091-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)