Advances in the Theory of Numbers Proceedings of the Thirteenth Conference of the Canadian Number Theory Association /

The theory of numbers continues to occupy a central place in modern mathematics because of both its long history over many centuries as well as its many diverse applications to other fields such as discrete mathematics, cryptography, and coding theory. The proof by Andrew Wiles (with Richard Taylor)...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Alaca, Ayşe (Επιμελητής έκδοσης), Alaca, Şaban (Επιμελητής έκδοσης), Williams, Kenneth S. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Σειρά:Fields Institute Communications, 77
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04001nam a22004695i 4500
001 978-1-4939-3201-6
003 DE-He213
005 20151028183648.0
007 cr nn 008mamaa
008 151028s2015 xxu| s |||| 0|eng d
020 |a 9781493932016  |9 978-1-4939-3201-6 
024 7 |a 10.1007/978-1-4939-3201-6  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
245 1 0 |a Advances in the Theory of Numbers  |h [electronic resource] :  |b Proceedings of the Thirteenth Conference of the Canadian Number Theory Association /  |c edited by Ayşe Alaca, Şaban Alaca, Kenneth S. Williams. 
250 |a 1st ed. 2015. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2015. 
300 |a XX, 235 p. 15 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Fields Institute Communications,  |x 1069-5265 ;  |v 77 
505 0 |a Preface -- List of lectures -- List of participants -- Identities for Logarithmic Means (B.C. Berndt, S. Kim) -- Universal Thickening of the Field of Real Numbers (A. Connes, C. Consani) -- Moments of Zeta and Correlations of Divisor-sums (B. Conrey, J.P. Keating) -- A Note on the Theorem of Maynard and Tao (T. Freiberg) -- A Prime Analogue of Roth's Theorem in Function Fields (Y.R. Liu, C.V. Spencer) -- The Distribution of Self-Fibonacci Divisors (F. Luca, E. Tron).Some Remarks on Automorphy and the Sato-Tate Conjecture (M.R. Murty, V.K. Murty) -- Division Polynomials with Galois Group SU3(3).2 = G2(2) (D.P. Roberts) -- A variant of Weyl’s Inequality for Systems of Forms and Applications (D. Schindler) -- The Breuil-Schneider Conjecture, a Survey (C.M. Sorensen). 
520 |a The theory of numbers continues to occupy a central place in modern mathematics because of both its long history over many centuries as well as its many diverse applications to other fields such as discrete mathematics, cryptography, and coding theory. The proof by Andrew Wiles (with Richard Taylor) of Fermat’s last theorem published in 1995 illustrates the high level of difficulty of problems encountered in number-theoretic research as well as the usefulness of the new ideas arising from its proof. The thirteenth conference of the Canadian Number Theory Association was held at Carleton University, Ottawa, Ontario, Canada from June 16 to 20, 2014. Ninety-nine talks were presented at the conference on the theme of advances in the theory of numbers. Topics of the talks reflected the diversity of current trends and activities in modern number theory. These topics included modular forms, hypergeometric functions, elliptic curves, distribution of prime numbers, diophantine equations, L-functions, Diophantine approximation, and many more. This volume contains some of the papers presented at the conference. All papers were refereed. The high quality of the articles and their contribution to current research directions make this volume a must for any mathematics library and is particularly relevant to researchers and graduate students with an interest in number theory. The editors hope that this volume will serve as both a resource and an inspiration to future generations of researchers in the theory of numbers. 
650 0 |a Mathematics. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
700 1 |a Alaca, Ayşe.  |e editor. 
700 1 |a Alaca, Şaban.  |e editor. 
700 1 |a Williams, Kenneth S.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493932009 
830 0 |a Fields Institute Communications,  |x 1069-5265 ;  |v 77 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-3201-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)