Geometry of Hypersurfaces

This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is access...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Cecil, Thomas E. (Συγγραφέας), Ryan, Patrick J. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03713nam a22005175i 4500
001 978-1-4939-3246-7
003 DE-He213
005 20151108121300.0
007 cr nn 008mamaa
008 151030s2015 xxu| s |||| 0|eng d
020 |a 9781493932467  |9 978-1-4939-3246-7 
024 7 |a 10.1007/978-1-4939-3246-7  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
100 1 |a Cecil, Thomas E.  |e author. 
245 1 0 |a Geometry of Hypersurfaces  |h [electronic resource] /  |c by Thomas E. Cecil, Patrick J. Ryan. 
250 |a 1st ed. 2015. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2015. 
300 |a XI, 596 p. 23 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 |a Preface -- 1. Introduction -- 2. Submanifolds of Real Space Forms -- 3. Isoparametric Hypersurfaces -- 4. Submanifolds in Lie Sphere Geometry -- 5. Dupin Hypersurfaces -- 6. Real Hypersurfaces in Complex Space Forms -- 7. Complex Submanifolds of CPn and CHn -- 8. Hopf Hypersurfaces -- 9. Hypersurfaces in Quaternionic Space Forms -- Appendix A. Summary of Notation -- References -- Index. 
520 |a This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area. Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hypersurfaces follows with results that are proved in the context of Lie sphere geometry as well as those that are obtained using standard methods of submanifold theory. Next comes a thorough treatment of the theory of real hypersurfaces in complex space forms. A central focus is a complete proof of the classification of Hopf hypersurfaces with constant principal curvatures due to Kimura and Berndt. The book concludes with the basic theory of real hypersurfaces in quaternionic space forms, including statements of the major classification results and directions for further research. 
650 0 |a Mathematics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Differential geometry. 
650 0 |a Hyperbolic geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Hyperbolic Geometry. 
700 1 |a Ryan, Patrick J.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493932450 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-3246-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)