An Introduction to Mathematical Finance with Applications Understanding and Building Financial Intuition /

This textbook aims to fill the gap between those that offer a theoretical treatment without many applications and those that present and apply formulas without appropriately deriving them. The balance achieved will give readers a fundamental understanding of key financial ideas and tools that form t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Petters, Arlie O. (Συγγραφέας), Dong, Xiaoying (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2016.
Σειρά:Springer Undergraduate Texts in Mathematics and Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03899nam a22005295i 4500
001 978-1-4939-3783-7
003 DE-He213
005 20180116023456.0
007 cr nn 008mamaa
008 160617s2016 xxu| s |||| 0|eng d
020 |a 9781493937837  |9 978-1-4939-3783-7 
024 7 |a 10.1007/978-1-4939-3783-7  |2 doi 
040 |d GrThAP 
050 4 |a HB135-147 
072 7 |a KF  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a BUS027000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Petters, Arlie O.  |e author. 
245 1 3 |a An Introduction to Mathematical Finance with Applications  |h [electronic resource] :  |b Understanding and Building Financial Intuition /  |c by Arlie O. Petters, Xiaoying Dong. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2016. 
300 |a XVII, 483 p. 52 illus., 12 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Texts in Mathematics and Technology,  |x 1867-5506 
505 0 |a Preface -- 1. Preliminaries and Financial Markets -- 2. The Time Value of Money -- 3. Markowitz Portfolio Theory -- 4. Capital Market Theory and Portfolio Risk Measures -- 5. Binomial Trees and Security Pricing Modeling -- 6. Stochastic Calculus and Geometric Brownian Motion Model -- 7. Derivatives: Forwards, Futures, Swaps and Options -- 8. The BSM Model and European Option Pricing -- Index. . 
520 |a This textbook aims to fill the gap between those that offer a theoretical treatment without many applications and those that present and apply formulas without appropriately deriving them. The balance achieved will give readers a fundamental understanding of key financial ideas and tools that form the basis for building realistic models, including those that may become proprietary. Numerous carefully chosen examples and exercises reinforce the student’s conceptual understanding and facility with applications. The exercises are divided into conceptual, application-based, and theoretical problems, which probe the material deeper. The book is aimed toward advanced undergraduates and first-year graduate students who are new to finance or want a more rigorous treatment of the mathematical models used within. While no background in finance is assumed, prerequisite math courses include multivariable calculus, probability, and linear algebra. The authors introduce additional mathematical tools as needed. The entire textbook is appropriate for a single year-long course on introductory mathematical finance. The self-contained design of the text allows for instructor flexibility in topics courses and those focusing on financial derivatives. Moreover, the text is useful for mathematicians, physicists, and engineers who want to learn finance via an approach that builds their financial intuition and is explicit about model building, as well as business school students who want a treatment of finance that is deeper but not overly theoretical. 
650 0 |a Mathematics. 
650 0 |a Economics, Mathematical. 
650 0 |a Actuarial science. 
650 0 |a Mathematical models. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Quantitative Finance. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Actuarial Sciences. 
700 1 |a Dong, Xiaoying.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493937813 
830 0 |a Springer Undergraduate Texts in Mathematics and Technology,  |x 1867-5506 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-3783-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)