The Fractal Geometry of the Brain

Reviews the most intriguing applications of fractal analysis in neuroscience with a focus on current and future potential, limits, advantages, and disadvantages. Will bring an understanding of fractals to clinicians and researchers also if they do not have a mathematical background, and will serve a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Di Ieva, Antonio (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2016.
Σειρά:Springer Series in Computational Neuroscience,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04851nam a22004575i 4500
001 978-1-4939-3995-4
003 DE-He213
005 20160803160711.0
007 cr nn 008mamaa
008 160803s2016 xxu| s |||| 0|eng d
020 |a 9781493939954  |9 978-1-4939-3995-4 
024 7 |a 10.1007/978-1-4939-3995-4  |2 doi 
040 |d GrThAP 
050 4 |a RC321-580 
072 7 |a PSAN  |2 bicssc 
072 7 |a MED057000  |2 bisacsh 
082 0 4 |a 612.8  |2 23 
245 1 4 |a The Fractal Geometry of the Brain  |h [electronic resource] /  |c edited by Antonio Di Ieva. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2016. 
300 |a XXII, 585 p. 175 illus., 86 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Computational Neuroscience,  |x 2197-1900 
505 0 |a Part I. Introduction to Fractal Geometry and its Applications to Neurosciences -- The Fractal Geometry of the Brain: An Overview -- 2. Box-Counting Fractal Analysis: A Primer for the Clinician -- Tenets and Methods of Fractal Analysis (1/f noise) -- 4. Tenets, Methods and Applications of Multifractal Analysis in Neurosciences -- Part II. Fractals in Neuroanatomy and Basic Neurosciences -- Fractals in Neuroanatomy and Basic Neurosciences: An Overview -- Morphology and Fractal-Based Classifications of Neurons and Microglia -- The Morphology of the Brain Neurons: Box-counting Method in Quantitative Analysis of 2D Image -- Neuronal Fractal Dynamics -- Does a Self-Similarity Logic Shape the Organization of the Nervous System? -- Fractality of Cranial Sutures -- The Fractal Geometry of the Human Brain: An Evolutionary Perspective -- Part III. Fractals in Clinical Neurosciences -- Fractal Analysis in Clinical Neurosciences: An Overview -- Fractal Analysis in Neurological Diseases -- Fractal Dimension Studies of the Brain Shape in Aging and Neurodegenerative Diseases -- Fractal Analysis in Neurodegenerative Diseases -- Fractal Analysis of the Cerebrovascular System Physiopathology -- Fractal and Chaos in the Hemodynamics of Intracranial Aneurysms -- Fractal-based Analysis of Arteriovenous Malformations (AVMs) -- Fractals in Neuroimaging -- Computational Fractal-Based Analysis of MR Susceptibility Weighted Imaging (SWI) in Neuro-oncology and neurotraumatology -- Texture Estimation for Abnormal Tissue Segmentation in Brain MRI -- Tumor Growth in the Brain: Complexity and Fractality -- Histological Fractal-based Classification of Brain Tumors -- Computational Fractal-based Analysis of the Brain Tumors Microvascular Networks -- Fractal analysis of electroencephalographic time-series (EEG-signals) -- On Multiscaling of Parkinsonian Rest Tremor Signals and Their Classification -- Fractals and Electromyograms -- Fractal analysis in Neuro-ophthalmology -- Fractals in Affective and Anxiety Disorders -- Fractal Fluency: An Intimate Relationship Between the Brain and Processing of Fractal Stimuli -- Part IV. Computational Fractal-Based Neurosciences -- Computational Fractal-based Neurosciences: An Overview -- ImageJ in Computational Fractal-based Neuroscience: Pattern Extraction and Translational Research -- Fractal Analysis in MATLAB: A Tutorial for Neuroscientists -- Methodology to Increase the Computational Speed to Obtain the Fractal Dimension Using GPU Programming -- Fractal Electronics as a Generic Interface to Neurons -- Fractal Geometry meets Computational Intelligence: Future Perspectives. 
520 |a Reviews the most intriguing applications of fractal analysis in neuroscience with a focus on current and future potential, limits, advantages, and disadvantages. Will bring an understanding of fractals to clinicians and researchers also if they do not have a mathematical background, and will serve as a good tool for teaching the translational applications of computational models to students and scholars of different disciplines. This comprehensive collection is organized in four parts: (1) Basics of fractal analysis; (2) Applications of fractals to the basic neurosciences; (3) Applications of fractals to the clinical neurosciences; (4) Analysis software, modeling and methodology. 
650 0 |a Medicine. 
650 0 |a Neurosciences. 
650 0 |a Neurology. 
650 1 4 |a Biomedicine. 
650 2 4 |a Neurosciences. 
650 2 4 |a Neurology. 
700 1 |a Di Ieva, Antonio.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493939930 
830 0 |a Springer Series in Computational Neuroscience,  |x 2197-1900 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-3995-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642)