Ordinary Differential Equations: Basics and Beyond

This book develops the theory of ordinary differential equations (ODEs), starting from an introductory level (with no prior experience in ODEs assumed) through to a graduate-level treatment of the qualitative theory, including bifurcation theory (but not chaos). While proofs are rigorous, the exposi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Schaeffer, David G. (Συγγραφέας), Cain, John W. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2016.
Σειρά:Texts in Applied Mathematics, 65
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03490nam a22005055i 4500
001 978-1-4939-6389-8
003 DE-He213
005 20161111124601.0
007 cr nn 008mamaa
008 161111s2016 xxu| s |||| 0|eng d
020 |a 9781493963898  |9 978-1-4939-6389-8 
024 7 |a 10.1007/978-1-4939-6389-8  |2 doi 
040 |d GrThAP 
050 4 |a QA372 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.352  |2 23 
100 1 |a Schaeffer, David G.  |e author. 
245 1 0 |a Ordinary Differential Equations: Basics and Beyond  |h [electronic resource] /  |c by David G. Schaeffer, John W. Cain. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2016. 
300 |a XXX, 542 p. 139 illus., 61 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts in Applied Mathematics,  |x 0939-2475 ;  |v 65 
505 0 |a Introduction -- Linear Systems with Constant Coefficients -- Nonlinear Systems: Local Theory -- Nonlinear Systems: Global Theory -- Nondimensionalization and Scaling -- Trajectories Near Equilibria -- Oscillations in ODEs -- Bifurcation from Equilibria -- Examples of Global Bifurcation -- Epilogue -- Appendices. 
520 |a This book develops the theory of ordinary differential equations (ODEs), starting from an introductory level (with no prior experience in ODEs assumed) through to a graduate-level treatment of the qualitative theory, including bifurcation theory (but not chaos). While proofs are rigorous, the exposition is reader-friendly, aiming for the informality of face-to-face interactions. A unique feature of this book is the integration of rigorous theory with numerous applications of scientific interest. Besides providing motivation, this synthesis clarifies the theory and enhances scientific literacy. Other features include: (i) a wealth of exercises at various levels, along with commentary that explains why they matter; (ii) figures with consistent color conventions to identify nullclines, periodic orbits, stable and unstable manifolds; and (iii) a dedicated website with software templates, problem solutions, and other resources supporting the text. Given its many applications, the book may be used comfortably in science and engineering courses as well as in mathematics courses. Its level is accessible to upper-level undergraduates but still appropriate for graduate students. The thoughtful presentation, which anticipates many confusions of beginning students, makes the book suitable for a teaching environment that emphasizes self-directed, active learning (including the so-called inverted classroom). 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Differential equations. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
700 1 |a Cain, John W.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493963874 
830 0 |a Texts in Applied Mathematics,  |x 0939-2475 ;  |v 65 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-6389-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)