Pricing Derivatives Under Lévy Models Modern Finite-Difference and Pseudo-Differential Operators Approach /

This monograph presents a novel numerical approach to solving partial integro-differential equations arising in asset pricing models with jumps, which greatly exceeds the efficiency of existing approaches. The method, based on pseudo-differential operators and several original contributions to the t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Itkin, Andrey (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Birkhäuser, 2017.
Σειρά:Pseudo-Differential Operators, Theory and Applications, 12
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04184nam a22005175i 4500
001 978-1-4939-6792-6
003 DE-He213
005 20170227140902.0
007 cr nn 008mamaa
008 170227s2017 xxu| s |||| 0|eng d
020 |a 9781493967926  |9 978-1-4939-6792-6 
024 7 |a 10.1007/978-1-4939-6792-6  |2 doi 
040 |d GrThAP 
050 4 |a HB135-147 
072 7 |a KF  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a BUS027000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Itkin, Andrey.  |e author. 
245 1 0 |a Pricing Derivatives Under Lévy Models  |h [electronic resource] :  |b Modern Finite-Difference and Pseudo-Differential Operators Approach /  |c by Andrey Itkin. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Birkhäuser,  |c 2017. 
300 |a XX, 308 p. 64 illus., 62 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Pseudo-Differential Operators, Theory and Applications,  |x 2297-0355 ;  |v 12 
505 0 |a Basics of a finite-difference method -- Modern finite-difference approach -- An M-matrix theory and FD -- Brief Introduction into Lévy processes -- Pseudo-parabolic and fractional equations of option pricing -- Pseudo-parabolic equations for various Lévy models -- High-order splitting methods for forward PDEs and PIDEs -- Multi-dimensional structural default models and correlated jumps -- LSV models with stochastic interest rates and correlated jumps -- Stochastic skew model -- Glossary -- References -- Index. 
520 |a This monograph presents a novel numerical approach to solving partial integro-differential equations arising in asset pricing models with jumps, which greatly exceeds the efficiency of existing approaches. The method, based on pseudo-differential operators and several original contributions to the theory of finite-difference schemes, is new as applied to the Lévy processes in finance, and is herein presented for the first time in a single volume. The results within, developed in a series of research papers, are collected and arranged together with the necessary background material from Lévy processes, the modern theory of finite-difference schemes, the theory of M-matrices and EM-matrices, etc., thus forming a self-contained work that gives the reader a smooth introduction to the subject. For readers with no knowledge of finance, a short explanation of the main financial terms and notions used in the book is given in the glossary. The latter part of the book demonstrates the efficacy of the method by solving some typical problems encountered in computational finance, including structural default models with jumps, and local stochastic volatility models with stochastic interest rates and jumps. The author also adds extra complexity to the traditional statements of these problems by taking into account jumps in each stochastic component while all jumps are fully correlated, and shows how this setting can be efficiently addressed within the framework of the new method. Written for non-mathematicians, this book will appeal to financial engineers and analysts, econophysicists, and researchers in applied numerical analysis. It can also be used as an advance course on modern finite-difference methods or computational finance. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Economics, Mathematical. 
650 0 |a Computer mathematics. 
650 0 |a Mathematical models. 
650 1 4 |a Mathematics. 
650 2 4 |a Quantitative Finance. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Partial Differential Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493967902 
830 0 |a Pseudo-Differential Operators, Theory and Applications,  |x 2297-0355 ;  |v 12 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-6792-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)