Matrix-Exponential Distributions in Applied Probability

This book contains an in-depth treatment of matrix-exponential (ME) distributions and their sub-class of phase-type (PH) distributions. Loosely speaking, an ME distribution is obtained through replacing the intensity parameter in an exponential distribution by a matrix. The ME distributions can also...

Full description

Bibliographic Details
Main Authors: Bladt, Mogens (Author), Nielsen, Bo Friis (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Boston, MA : Springer US : Imprint: Springer, 2017.
Series:Probability Theory and Stochastic Modelling, 81
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03830nam a22005055i 4500
001 978-1-4939-7049-0
003 DE-He213
005 20170518204506.0
007 cr nn 008mamaa
008 170518s2017 xxu| s |||| 0|eng d
020 |a 9781493970490  |9 978-1-4939-7049-0 
024 7 |a 10.1007/978-1-4939-7049-0  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Bladt, Mogens.  |e author. 
245 1 0 |a Matrix-Exponential Distributions in Applied Probability  |h [electronic resource] /  |c by Mogens Bladt, Bo Friis Nielsen. 
264 1 |a Boston, MA :  |b Springer US :  |b Imprint: Springer,  |c 2017. 
300 |a XVII, 736 p. 58 illus., 21 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Probability Theory and Stochastic Modelling,  |x 2199-3130 ;  |v 81 
505 0 |a Preface -- Notation -- Preliminaries on Stochastic Processes -- Martingales and More General Markov Processes -- Phase-type Distributions -- Matrix-exponential Distributions -- Renewal Theory -- Random Walks -- Regeneration and Harris Chains -- Multivariate Distributions -- Markov Additive Processes -- Markovian Point Processes -- Some Applications to Risk Theory -- Statistical Methods for Markov Processes -- Estimation of Phase-type Distributions -- Bibliographic Notes -- Appendix. 
520 |a This book contains an in-depth treatment of matrix-exponential (ME) distributions and their sub-class of phase-type (PH) distributions. Loosely speaking, an ME distribution is obtained through replacing the intensity parameter in an exponential distribution by a matrix. The ME distributions can also be identified as the class of non-negative distributions with rational Laplace transforms. If the matrix has the structure of a sub-intensity matrix for a Markov jump process we obtain a PH distribution which allows for nice probabilistic interpretations facilitating the derivation of exact solutions and closed form formulas. The full potential of ME and PH unfolds in their use in stochastic modelling. Several chapters on generic applications, like renewal theory, random walks and regenerative processes, are included together with some specific examples from queueing theory and insurance risk. We emphasize our intention towards applications by including an extensive treatment on statistical methods for PH distributions and related processes that will allow practitioners to calibrate models to real data. Aimed as a textbook for graduate students in applied probability and statistics, the book provides all the necessary background on Poisson processes, Markov chains, jump processes, martingales and re-generative methods. It is our hope that the provided background may encourage researchers and practitioners from other fields, like biology, genetics and medicine, who wish to become acquainted with the matrix-exponential method and its applications. . 
650 0 |a Mathematics. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Operations Research, Management Science. 
700 1 |a Nielsen, Bo Friis.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493970476 
830 0 |a Probability Theory and Stochastic Modelling,  |x 2199-3130 ;  |v 81 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-7049-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)