Linear and Nonlinear Optimization

This textbook on Linear and Nonlinear Optimization is intended for graduate and advanced undergraduate students in operations research and related fields. It is both literate and mathematically strong, yet requires no prior course in optimization. As suggested by its title, the book is divided into...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Cottle, Richard W. (Συγγραφέας), Thapa, Mukund N. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2017.
Σειρά:International Series in Operations Research & Management Science, 253
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05188nam a22005415i 4500
001 978-1-4939-7055-1
003 DE-He213
005 20180124142342.0
007 cr nn 008mamaa
008 170611s2017 xxu| s |||| 0|eng d
020 |a 9781493970551  |9 978-1-4939-7055-1 
024 7 |a 10.1007/978-1-4939-7055-1  |2 doi 
040 |d GrThAP 
050 4 |a HD30.23 
072 7 |a KJT  |2 bicssc 
072 7 |a KJMD  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
082 0 4 |a 658.40301  |2 23 
100 1 |a Cottle, Richard W.  |e author. 
245 1 0 |a Linear and Nonlinear Optimization  |h [electronic resource] /  |c by Richard W. Cottle, Mukund N. Thapa. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2017. 
300 |a XXXI, 614 p. 58 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a International Series in Operations Research & Management Science,  |x 0884-8289 ;  |v 253 
505 0 |a Chapter 1. LP Models and Applications -- Chapter 2. Linear Equations and Inequalities -- Chapter 3. The Simplex Algorithm -- Chapter 4. The Simplex Algorithm Continued -- Chapter 5. Duality and the Dual Simplex Algorithm -- Chapter 6. Postoptimality Analysis -- Chapter 7. Some Computational Considerations -- Chapter 8. NLP Models and Applications -- Chapter 9. Unconstrained Optimization -- Chapter 10. Descent Methods -- Chapter 11. Optimality Conditions -- Chapter 12. Problems with Linear Constraints -- Chapter 13. Problems with Nonlinear Constraints -- Chapter 14. Interior-Point Methods. 
520 |a This textbook on Linear and Nonlinear Optimization is intended for graduate and advanced undergraduate students in operations research and related fields. It is both literate and mathematically strong, yet requires no prior course in optimization. As suggested by its title, the book is divided into two parts covering in their individual chapters LP Models and Applications; Linear Equations and Inequalities; The Simplex Algorithm; Simplex Algorithm Continued; Duality and the Dual Simplex Algorithm; Postoptimality Analyses; Computational Considerations; Nonlinear (NLP) Models and Applications; Unconstrained Optimization; Descent Methods; Optimality Conditions; Problems with Linear Constraints; Problems with Nonlinear Constraints; Interior-Point Methods; and an Appendix covering Mathematical Concepts. Each chapter ends with a set of exercises. The book is based on lecture notes the authors have used in numerous optimization courses the authors have taught at Stanford University. It emphasizes modeling and numerical algorithms for optimization with continuous (not integer) variables. The discussion presents the underlying theory without always focusing on formal mathematical proofs (which can be found in cited references). Another feature of this book is its inclusion of cultural and historical matters, most often appearing among the footnotes. "This book is a real gem. The authors do a masterful job of rigorously presenting all of the relevant theory clearly and concisely while managing to avoid unnecessary tedious mathematical details. This is an ideal book for teaching a one or two semester masters-level course in optimization – it broadly covers linear and nonlinear programming effectively balancing modeling, algorithmic theory, computation, implementation, illuminating historical facts, and numerous interesting examples and exercises. Due to the clarity of the exposition, this book also serves as a valuable reference for self-study." Professor Ilan Adler, IEOR Department, UC Berkeley "A carefully crafted introduction to the main elements and applications of mathematical optimization. This volume presents the essential concepts of linear and nonlinear programming in an accessible format filled with anecdotes, examples, and exercises that bring the topic to life. The authors plumb their decades of experience in optimization to provide an enriching layer of historical context. Suitable for advanced undergraduates and masters students in management science, operations research, and related fields." Michael P. Friedlander, IBM Professor of Computer Science, Professor of Mathematics, University of British Columbia. 
650 0 |a Business. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Mathematical models. 
650 0 |a Mathematical optimization. 
650 0 |a Management science. 
650 1 4 |a Business and Management. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Operations Research, Management Science. 
650 2 4 |a Optimization. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
700 1 |a Thapa, Mukund N.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493970537 
830 0 |a International Series in Operations Research & Management Science,  |x 0884-8289 ;  |v 253 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-7055-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-BUM 
950 |a Business and Management (Springer-41169)