A Graduate Course on Statistical Inference

This textbook offers an accessible and comprehensive overview of statistical estimation and inference that reflects current trends in statistical research. It draws from three main themes throughout: the finite-sample theory, the asymptotic theory, and Bayesian statistics. The authors have included...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Li, Bing (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Babu, G. Jogesh (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Springer Texts in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02971nam a2200457 4500
001 978-1-4939-9761-9
003 DE-He213
005 20191029053547.0
007 cr nn 008mamaa
008 190801s2019 xxu| s |||| 0|eng d
020 |a 9781493997619  |9 978-1-4939-9761-9 
024 7 |a 10.1007/978-1-4939-9761-9  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Li, Bing.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A Graduate Course on Statistical Inference  |h [electronic resource] /  |c by Bing Li, G. Jogesh Babu. 
250 |a 1st ed. 2019. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2019. 
300 |a XII, 379 p. 148 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 1431-875X 
505 0 |a 1. Probability and Random Variables -- 2. Classical Theory of Estimation -- 3. Testing Hypotheses in the Presence of Nuisance Parameters -- 4. Testing Hypotheses in the Presence of Nuisance Parameters -- 5. Basic Ideas of Bayesian Methods -- 6. Bayesian Inference -- 7. Asymptotic Tools and Projections -- 8. Asymptotic Theory for Maximum Likelihood Estimation -- 9. Estimating Equations -- 10. Convolution Theorem and Asymptotic Efficiency -- 11. Asymptotic Hypothesis Test -- References -- Index. 
520 |a This textbook offers an accessible and comprehensive overview of statistical estimation and inference that reflects current trends in statistical research. It draws from three main themes throughout: the finite-sample theory, the asymptotic theory, and Bayesian statistics. The authors have included a chapter on estimating equations as a means to unify a range of useful methodologies, including generalized linear models, generalized estimation equations, quasi-likelihood estimation, and conditional inference. They also utilize a standardized set of assumptions and tools throughout, imposing regular conditions and resulting in a more coherent and cohesive volume. Written for the graduate-level audience, this text can be used in a one-semester or two-semester course. 
650 0 |a Statistics . 
650 1 4 |a Statistical Theory and Methods.  |0 http://scigraph.springernature.com/things/product-market-codes/S11001 
700 1 |a Babu, G. Jogesh.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493997596 
776 0 8 |i Printed edition:  |z 9781493997602 
830 0 |a Springer Texts in Statistics,  |x 1431-875X 
856 4 0 |u https://doi.org/10.1007/978-1-4939-9761-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)