A Graduate Course on Statistical Inference
This textbook offers an accessible and comprehensive overview of statistical estimation and inference that reflects current trends in statistical research. It draws from three main themes throughout: the finite-sample theory, the asymptotic theory, and Bayesian statistics. The authors have included...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York : Imprint: Springer,
2019.
|
Έκδοση: | 1st ed. 2019. |
Σειρά: | Springer Texts in Statistics,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1. Probability and Random Variables
- 2. Classical Theory of Estimation
- 3. Testing Hypotheses in the Presence of Nuisance Parameters
- 4. Testing Hypotheses in the Presence of Nuisance Parameters
- 5. Basic Ideas of Bayesian Methods
- 6. Bayesian Inference
- 7. Asymptotic Tools and Projections
- 8. Asymptotic Theory for Maximum Likelihood Estimation
- 9. Estimating Equations
- 10. Convolution Theorem and Asymptotic Efficiency
- 11. Asymptotic Hypothesis Test
- References
- Index.