Introduction to Data Mining for the Life Sciences

One of the major challenges for the scientific community, a challenge that has been seen in many business disciplines, is the exponential increase in data being generated by new experimental techniques and research. A single microarray experiment, for example, can generate thousands of data points t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Sullivan, Rob (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Totowa, NJ : Humana Press, 2012.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03134nam a22004215i 4500
001 978-1-59745-290-8
003 DE-He213
005 20140302021805.0
007 cr nn 008mamaa
008 120106s2012 xxu| s |||| 0|eng d
020 |a 9781597452908  |9 978-1-59745-290-8 
024 7 |a 10.1007/978-1-59745-290-8  |2 doi 
040 |d GrThAP 
050 4 |a QH324.2-324.25 
072 7 |a PSD  |2 bicssc 
072 7 |a UB  |2 bicssc 
072 7 |a SCI056000  |2 bisacsh 
082 0 4 |a 570.285  |2 23 
100 1 |a Sullivan, Rob.  |e author. 
245 1 0 |a Introduction to Data Mining for the Life Sciences  |h [electronic resource] /  |c by Rob Sullivan. 
264 1 |a Totowa, NJ :  |b Humana Press,  |c 2012. 
300 |a XVIII, 638 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Fundamental Concepts -- Data Architecture and Data Modeling -- Representing Data Mining Results -- The Input Side of the Equation -- Statistical Methods -- Bayesian Statistics -- Machine Learning Techniques -- Classification and Prediction -- Informatics -- Systems Biology -- Let’s Call it a Day -- Appendix A -- Appendix B -- Appendix C. Appendix D -- Index. 
520 |a One of the major challenges for the scientific community, a challenge that has been seen in many business disciplines, is the exponential increase in data being generated by new experimental techniques and research. A single microarray experiment, for example, can generate thousands of data points that need to be analyzed, and this problem is predicted to increase. As new techniques in areas such as genomics and proteomics continue to be adopted into the mainstream as the costs fall, the need for effective mechanisms for synthesizing these disparate forms of data together for analysis is of paramount importance. But the sheer volume of data means that traditional techniques need to be augmented by approaches that elicit knowledge from the data, using automated procedures. Data mining provides a set of such techniques, new techniques to integrate, synthesize, and analyze the data, uncovering the hidden patterns that exist within. Traditionally, techniques such as kernel learning methods, pattern recognition, and data mining, have been the domain of researchers in areas such as artificial intelligence, but leveraging these tools, techniques, and concepts against your data asset to identify problems early, understand interactions that exist and highlight previously unrealized relationships through the combination of these different disciplines can provide significant value for the investigator and her organization. 
650 0 |a Life sciences. 
650 0 |a Bioinformatics. 
650 1 4 |a Life Sciences. 
650 2 4 |a Bioinformatics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781588299420 
856 4 0 |u http://dx.doi.org/10.1007/978-1-59745-290-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642)