Probabilistic Modeling in Bioinformatics and Medical Informatics

Probabilistic Modelling in Bioinformatics and Medical Informatics has been written for researchers and students in statistics, machine learning, and the biological sciences. The first part of this book provides a self-contained introduction to the methodology of Bayesian networks. The following part...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Husmeier, Dirk (Επιμελητής έκδοσης), Dybowski, Richard (Επιμελητής έκδοσης), Roberts, Stephen (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2005.
Σειρά:Advanced Information and Knowledge Processing
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03790nam a22005895i 4500
001 978-1-84628-119-8
003 DE-He213
005 20151204145106.0
007 cr nn 008mamaa
008 100301s2005 xxk| s |||| 0|eng d
020 |a 9781846281198  |9 978-1-84628-119-8 
024 7 |a 10.1007/b138794  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a UYAM  |2 bicssc 
072 7 |a UFM  |2 bicssc 
072 7 |a COM077000  |2 bisacsh 
082 0 4 |a 005.55  |2 23 
245 1 0 |a Probabilistic Modeling in Bioinformatics and Medical Informatics  |h [electronic resource] /  |c edited by Dirk Husmeier, Richard Dybowski, Stephen Roberts. 
264 1 |a London :  |b Springer London,  |c 2005. 
300 |a XX, 508 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Information and Knowledge Processing 
505 0 |a Probabilistic Modeling -- A Leisurely Look at Statistical Inference -- to Learning Bayesian Networks from Data -- A Casual View of Multi-Layer Perceptrons as Probability Models -- Bioinformatics -- to Statistical Phylogenetics -- Detecting Recombination in DNA Sequence Alignments -- RNA-Based Phylogenetic Methods -- Statistical Methods in Microarray Gene Expression Data Analysis -- Inferring Genetic Regulatory Networks from Microarray Experiments with Bayesian Networks -- Modeling Genetic Regulatory Networks using Gene Expression Profiling and State-Space Models -- Medical Informatics -- An Anthology of Probabilistic Models for Medical Informatics -- Bayesian Analysis of Population Pharmacokinetic/Pharmacodynamic Models -- Assessing the Effectiveness of Bayesian Feature Selection -- Bayes Consistent Classification of EEG Data by Approximate Marginalization -- Ensemble Hidden Markov Models with Extended Observation Densities for Biosignal Analysis -- A Probabilistic Network for Fusion of Data and Knowledge in Clinical Microbiology -- Software for Probability Models in Medical Informatics. 
520 |a Probabilistic Modelling in Bioinformatics and Medical Informatics has been written for researchers and students in statistics, machine learning, and the biological sciences. The first part of this book provides a self-contained introduction to the methodology of Bayesian networks. The following parts demonstrate how these methods are applied in bioinformatics and medical informatics. All three fields - the methodology of probabilistic modeling, bioinformatics, and medical informatics - are evolving very quickly. The text should therefore be seen as an introduction, offering both elementary tutorials as well as more advanced applications and case studies. 
650 0 |a Computer science. 
650 0 |a Health informatics. 
650 0 |a Algorithms. 
650 0 |a Mathematical statistics. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Bioinformatics. 
650 0 |a Statistics. 
650 1 4 |a Computer Science. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Math Applications in Computer Science. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
650 2 4 |a Bioinformatics. 
650 2 4 |a Health Informatics. 
700 1 |a Husmeier, Dirk.  |e editor. 
700 1 |a Dybowski, Richard.  |e editor. 
700 1 |a Roberts, Stephen.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781852337780 
830 0 |a Advanced Information and Knowledge Processing 
856 4 0 |u http://dx.doi.org/10.1007/b138794  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)