A Modern Introduction to Probability and Statistics Understanding Why and How /

Probability and Statistics are studied by most science students, usually as a second- or third-year course. Many current texts in the area are just cookbooks and, as a result, students do not know why they perform the methods they are taught, or why the methods work. The strength of this book is tha...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Dekking, Frederik Michel (Συγγραφέας), Kraaikamp, Cornelis (Συγγραφέας), Lopuhaä, Hendrik Paul (Συγγραφέας), Meester, Ludolf Erwin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2005.
Σειρά:Springer Texts in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04447nam a22005535i 4500
001 978-1-84628-168-6
003 DE-He213
005 20160802114903.0
007 cr nn 008mamaa
008 100301s2005 xxk| s |||| 0|eng d
020 |a 9781846281686  |9 978-1-84628-168-6 
024 7 |a 10.1007/1-84628-168-7  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Dekking, Frederik Michel.  |e author. 
245 1 2 |a A Modern Introduction to Probability and Statistics  |h [electronic resource] :  |b Understanding Why and How /  |c by Frederik Michel Dekking, Cornelis Kraaikamp, Hendrik Paul Lopuhaä, Ludolf Erwin Meester. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2005. 
300 |a XVI, 488 p. 120 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 1431-875X 
505 0 |a Why probability and statistics? -- Outcomes, events, and probability -- Conditional probability and independence -- Discrete random variables -- Continuous random variables -- Simulation -- Expectation and variance -- Computations with random variables -- Joint distributions and independence -- Covariance and correlation -- More computations with more random variables -- The Poisson process -- The law of large numbers -- The central limit theorem -- Exploratory data analysis: graphical summaries -- Exploratory data analysis: numerical summaries -- Basic statistical models -- The bootstrap -- Unbiased estimators -- Efficiency and mean squared error -- Maximum likelihood -- The method of least squares -- Confidence intervals for the mean -- More on confidence intervals -- Testing hypotheses: essentials -- Testing hypotheses: elaboration -- The t-test -- Comparing two samples. 
520 |a Probability and Statistics are studied by most science students, usually as a second- or third-year course. Many current texts in the area are just cookbooks and, as a result, students do not know why they perform the methods they are taught, or why the methods work. The strength of this book is that it readdresses these shortcomings; by using examples, often from real-life and using real data, the authors can show how the fundamentals of probabilistic and statistical theories arise intuitively. It provides a tried and tested, self-contained course, that can also be used for self-study. A Modern Introduction to Probability and Statistics has numerous quick exercises to give direct feedback to the students. In addition the book contains over 350 exercises, half of which have answers, of which half have full solutions. A website at www.springeronline.com/1-85233-896-2 gives access to the data files used in the text, and, for instructors, the remaining solutions. The only pre-requisite for the book is a first course in calculus; the text covers standard statistics and probability material, and develops beyond traditional parametric models to the Poisson process, and on to useful modern methods such as the bootstrap. This will be a key text for undergraduates in Computer Science, Physics, Mathematics, Chemistry, Biology and Business Studies who are studying a mathematical statistics course, and also for more intensive engineering statistics courses for undergraduates in all engineering subjects. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 0 |a Statistics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
700 1 |a Kraaikamp, Cornelis.  |e author. 
700 1 |a Lopuhaä, Hendrik Paul.  |e author. 
700 1 |a Meester, Ludolf Erwin.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781852338961 
830 0 |a Springer Texts in Statistics,  |x 1431-875X 
856 4 0 |u http://dx.doi.org/10.1007/1-84628-168-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)