Essential Topology

Taking a direct route, Essential Topology brings the most important aspects of modern topology within reach of a second-year undergraduate student. Based on courses given at the University of Wales Swansea, it begins with a discussion of continuity and, by way of many examples, leads to the celebrat...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Crossley, Martin D. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2005.
Έκδοση:1.
Σειρά:Springer Undergraduate Mathematics Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02838nam a22004695i 4500
001 978-1-84628-194-5
003 DE-He213
005 20151204164814.0
007 cr nn 008mamaa
008 100301s2005 xxk| s |||| 0|eng d
020 |a 9781846281945  |9 978-1-84628-194-5 
024 7 |a 10.1007/1-84628-194-6  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
100 1 |a Crossley, Martin D.  |e author. 
245 1 0 |a Essential Topology  |h [electronic resource] /  |c by Martin D. Crossley. 
250 |a 1. 
264 1 |a London :  |b Springer London,  |c 2005. 
300 |a X, 224 p. 110 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
505 0 |a Continuous Functions -- Topological Spaces -- Topological Properties -- Deconstructionist Topology -- Homotopy -- The Euler Number -- Homotopy Groups -- Simplicial Homology -- Singular Homology -- More Deconstructionism. 
520 |a Taking a direct route, Essential Topology brings the most important aspects of modern topology within reach of a second-year undergraduate student. Based on courses given at the University of Wales Swansea, it begins with a discussion of continuity and, by way of many examples, leads to the celebrated "Hairy Ball theorem" and on to homotopy and homology: the cornerstones of contemporary algebraic topology. While containing all the key results of basic topology, Essential Topology never allows itself to get mired in details. Instead, the focus throughout is on providing interesting examples that clarify the ideas and motivate the student, reflecting the fact that these are often the key examples behind current research. With chapters on: * continuity and topological spaces * deconstructionist topology * the Euler number * homotopy groups including the fundamental group * simplicial and singular homology, and * fibre bundles Essential Topology contains enough material for two semester-long courses, and offers a one-stop-shop for undergraduate-level topology, leaving students motivated for postgraduate study in the field, and well prepared for it. 
650 0 |a Mathematics. 
650 0 |a Geometry. 
650 0 |a Topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Topology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781852337827 
830 0 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
856 4 0 |u http://dx.doi.org/10.1007/1-84628-194-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)