Support Vector Machines for Pattern Classification

I was shocked to see a student’s report on performance comparisons between support vector machines (SVMs) and fuzzy classi?ers that we had developed withourbestendeavors.Classi?cationperformanceofourfuzzyclassi?erswas comparable, but in most cases inferior, to that of support vector machines. This t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Abe, Shigeo (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2005.
Σειρά:Advances in Pattern Recognition
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03150nam a22005415i 4500
001 978-1-84628-219-5
003 DE-He213
005 20151204144536.0
007 cr nn 008mamaa
008 100301s2005 xxk| s |||| 0|eng d
020 |a 9781846282195  |9 978-1-84628-219-5 
024 7 |a 10.1007/1-84628-219-5  |2 doi 
040 |d GrThAP 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.4  |2 23 
100 1 |a Abe, Shigeo.  |e author. 
245 1 0 |a Support Vector Machines for Pattern Classification  |h [electronic resource] /  |c by Shigeo Abe. 
264 1 |a London :  |b Springer London,  |c 2005. 
300 |a XIV, 344 p. 110 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Pattern Recognition 
505 0 |a Two-Class Support Vector Machines -- Multiclass Support Vector Machines -- Variants of Support Vector Machines -- Training Methods -- Feature Selection and Extraction -- Clustering -- Kernel-Based Methods -- Maximum-Margin Multilayer Neural Networks -- Maximum-Margin Fuzzy Classifiers -- Function Approximation. 
520 |a I was shocked to see a student’s report on performance comparisons between support vector machines (SVMs) and fuzzy classi?ers that we had developed withourbestendeavors.Classi?cationperformanceofourfuzzyclassi?erswas comparable, but in most cases inferior, to that of support vector machines. This tendency was especially evident when the numbers of class data were small. I shifted my research e?orts from developing fuzzy classi?ers with high generalization ability to developing support vector machine–based classi?ers. This book focuses on the application of support vector machines to p- tern classi?cation. Speci?cally, we discuss the properties of support vector machines that are useful for pattern classi?cation applications, several m- ticlass models, and variants of support vector machines. To clarify their - plicability to real-world problems, we compare performance of most models discussed in the book using real-world benchmark data. Readers interested in the theoretical aspect of support vector machines should refer to books such as [109, 215, 256, 257]. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Text processing (Computer science). 
650 0 |a Pattern recognition. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 1 4 |a Computer Science. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Document Preparation and Text Processing. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Control, Robotics, Mechatronics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781852339296 
830 0 |a Advances in Pattern Recognition 
856 4 0 |u http://dx.doi.org/10.1007/1-84628-219-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)