Hyperbolic Geometry

The geometry of the hyperbolic plane has been an active and fascinating field of mathematical inquiry for most of the past two centuries. This book provides a self-contained introduction to the subject, suitable for third or fourth year undergraduates. The basic approach taken is to define hyperboli...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2005.
Έκδοση:Second Edition.
Σειρά:Springer Undergraduate Mathematics Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02953nam a22004455i 4500
001 978-1-84628-220-1
003 DE-He213
005 20150520200300.0
007 cr nn 008mamaa
008 100301s2005 xxk| s |||| 0|eng d
020 |a 9781846282201  |9 978-1-84628-220-1 
024 7 |a 10.1007/1-84628-220-9  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
245 1 0 |a Hyperbolic Geometry  |h [electronic resource]. 
250 |a Second Edition. 
264 1 |a London :  |b Springer London,  |c 2005. 
300 |a XII, 276 p. 21 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
505 0 |a The Basic Spaces -- The General Möbius Group -- Length and Distance in ? -- Planar Models of the Hyperbolic Plane -- Convexity, Area, and Trigonometry -- Nonplanar models. 
520 |a The geometry of the hyperbolic plane has been an active and fascinating field of mathematical inquiry for most of the past two centuries. This book provides a self-contained introduction to the subject, suitable for third or fourth year undergraduates. The basic approach taken is to define hyperbolic lines and develop a natural group of transformations preserving hyperbolic lines, and then study hyperbolic geometry as those quantities invariant under this group of transformations. Topics covered include the upper half-plane model of the hyperbolic plane, Möbius transformations, the general Möbius group, and their subgroups preserving the upper half-plane, hyperbolic arc-length and distance as quantities invariant under these subgroups, the Poincaré disc model, convex subsets of the hyperbolic plane, hyperbolic area, the Gauss-Bonnet formula and its applications. This updated second edition also features: an expanded discussion of planar models of the hyperbolic plane arising from complex analysis; the hyperboloid model of the hyperbolic plane; brief discussion of generalizations to higher dimensions; many new exercises. The style and level of the book, which assumes few mathematical prerequisites, make it an ideal introduction to this subject and provides the reader with a firm grasp of the concepts and techniques of this beautiful part of the mathematical landscape. . 
650 0 |a Mathematics. 
650 0 |a Geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Mathematics, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781852339340 
830 0 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
856 4 0 |u http://dx.doi.org/10.1007/1-84628-220-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)