Materials for Information Technology Devices, Interconnects and Packaging /

The fast-developing information technology industry is driving a need for new materials in order to facilitate the development of more reliable microelectronic products. Materials for Information Technology is an up-to-date overview of current developments and R&D activities in the field of mate...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Zschech, Ehrenfried (Επιμελητής έκδοσης), Whelan, Caroline (Επιμελητής έκδοσης), Mikolajick, Thomas (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2005.
Σειρά:Engineering Materials and Processes,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06586nam a22005895i 4500
001 978-1-84628-235-5
003 DE-He213
005 20151204180442.0
007 cr nn 008mamaa
008 100301s2005 xxk| s |||| 0|eng d
020 |a 9781846282355  |9 978-1-84628-235-5 
024 7 |a 10.1007/1-84628-235-7  |2 doi 
040 |d GrThAP 
050 4 |a TA1-2040 
072 7 |a TBC  |2 bicssc 
072 7 |a TEC000000  |2 bisacsh 
082 0 4 |a 620  |2 23 
245 1 0 |a Materials for Information Technology  |h [electronic resource] :  |b Devices, Interconnects and Packaging /  |c edited by Ehrenfried Zschech, Caroline Whelan, Thomas Mikolajick. 
264 1 |a London :  |b Springer London,  |c 2005. 
300 |a XIX, 508 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Engineering Materials and Processes,  |x 1619-0181 
505 0 |a Recent Advances in Thin-film Deposition -- Molecular-beam Deposition of High-k Gate Dielectrics for Advanced CMOS -- LEPECVD — A Production Technique for SiGe MOSFETs and MODFETs -- Thin-film Engineering by Atomic-layer Deposition for Ultra-scaled and Novel Devices -- Atomic-layer Deposited Barrier and Seed Layers for Interconnects -- Copper CVD for Conformal Ultrathin-film Deposition -- Pushing PVD to the Limits — Recent Advances -- Surface Engineering Using Self-assembled Monolayers: Model Substrates for Atomic-layer Deposition -- Selective Airgaps: Towards a Scalable Low-k Solution -- Silicides — Recent Advances and Prospects -- TEM Characterization of Strained Silicon -- Material Aspects of Non-Volatile Memories -- An Introduction to Nonvolatile Memory Technology -- Floating-dot Memory Transistors on SOI Substrate -- Ion-beam Synthesis of Nanocrystals for Multidot Memory Structures -- Scaling of Ferroelectric-based Memory Concepts -- Device Concepts with Magnetic Tunnel Junctions -- Phase-change Memories -- Amorphous-to-fcc Transition in GeSbTe Alloys -- Organic Nonvolatile Memories -- Materials for Interconnects -- Interconnect Technology — Today, Recent Advances and a Look into the Future -- Dielectric and Scaling Effects on Electromigration for Cu Interconnects -- Texture and Stress Study of Sub-Micron Copper Interconnect Lines Using X-ray Microdiffraction -- Stress Modeling for Copper Interconnect Structures -- Conductivity Enhancement in Metallization Structures of Regular Grains -- Advanced Barriers for Copper Interconnects -- Synthesis and Characterization of Compounds Obtained by Crosslinking of Polymethylhydrosiloxane by Aromatic Rings -- Revealing the Porous Structure of Low-k Materials Through Solvent Diffusion -- Carbon Nanotube Via Technologies for Future LSI Interconnects -- Nickel Nanowires Obtained by Template Synthesis -- Materials for Assembly/Packaging -- The Importance of Polymers in Wafer-Level Packaging -- Electrically Conductive Adhesives as Solder Alternative: A Feasible Challenge -- The Role of Au/Sn Solder in Packaging -- Packaging Materials: Organic-Inorganic Hybrids for Millimetre-Wave Optoelectronics -- Wafer-Level Three-Dimensional Hyper-Integration Technology Using Dielectric Adhesive Wafer Bonding -- Advanced Materials Characterization -- Challenges to Advanced Materials Characterization for ULSI Applications -- Advanced Material Characterization by TOFSIMS in Microelectronic -- Electronic Properties of the Interface Formed by Pr2O3 Growth on Si(001), Si(111) and SiC(0001) Surfaces -- Materials Characterization by Ellipsometry -- Thermal Desorption Spectrometry as a Method of Analysis for Advanced Interconnect Materials -- Electron Backscatter Diffraction: Application to Cu Interconnects in Top-View and Cross Section -- X-ray Reflectivity Characterisation of Thin-Film and Multilayer Structures. 
520 |a The fast-developing information technology industry is driving a need for new materials in order to facilitate the development of more reliable microelectronic products. Materials for Information Technology is an up-to-date overview of current developments and R&D activities in the field of materials used for information technology with a focus on future applications. Included are: materials for silicon-based semiconductor devices (including high-k gate dielectric materials); materials for nonvolatile memories; materials for on-chip interconnects and interlayer dielectrics (including silicides, barrier materials, low-k and ultra low-k dielectric materials); and materials for assembly and packaging The latest results in materials science and engineering as well as applications in the semiconductor industry are covered including the synthesis of blanket and patterned thin film materials, their properties, constitution, structure and microstructure. Computer modelling and analytical techniques to characterise thin film structures are also included to give a comprehensive survey of materials for the IT industry. The Engineering Materials and Processes series focuses on all forms of materials and the processes used to synthesise and formulate them as they relate to the various engineering disciplines. The series deals with a diverse range of materials: ceramics; metals (ferrous and non-ferrous); semiconductors; composites, polymers, biomimetics etc. Each monograph in the series is written by a specialist and demonstrates how enhancements in materials and the processes associated with them can improve performance in the field of engineering in which they are used. 
650 0 |a Engineering. 
650 0 |a Solid state physics. 
650 0 |a Spectroscopy. 
650 0 |a Microscopy. 
650 0 |a Electronics. 
650 0 |a Microelectronics. 
650 0 |a Materials  |x Surfaces. 
650 0 |a Thin films. 
650 1 4 |a Engineering. 
650 2 4 |a Engineering, general. 
650 2 4 |a Electronics and Microelectronics, Instrumentation. 
650 2 4 |a Solid State Physics. 
650 2 4 |a Spectroscopy and Microscopy. 
650 2 4 |a Ceramics, Glass, Composites, Natural Methods. 
650 2 4 |a Surfaces and Interfaces, Thin Films. 
700 1 |a Zschech, Ehrenfried.  |e editor. 
700 1 |a Whelan, Caroline.  |e editor. 
700 1 |a Mikolajick, Thomas.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781852339418 
830 0 |a Engineering Materials and Processes,  |x 1619-0181 
856 4 0 |u http://dx.doi.org/10.1007/1-84628-235-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)