Metric Spaces

This volume provides a complete introduction to metric space theory for undergraduates. It covers the topology of metric spaces, continuity, connectedness, compactness and product spaces, and includes results such as the Tietze-Urysohn extension theorem, Picard's theorem on ordinary differentia...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Shirali, Satish (Συγγραφέας), Vasudeva, Harkrishan L. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2006.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02805nam a22004935i 4500
001 978-1-84628-244-7
003 DE-He213
005 20151204174958.0
007 cr nn 008mamaa
008 100301s2006 xxk| s |||| 0|eng d
020 |a 9781846282447  |9 978-1-84628-244-7 
024 7 |a 10.1007/1-84628-244-6  |2 doi 
040 |d GrThAP 
050 4 |a QA611-614.97 
072 7 |a PBP  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514  |2 23 
100 1 |a Shirali, Satish.  |e author. 
245 1 0 |a Metric Spaces  |h [electronic resource] /  |c by Satish Shirali, Harkrishan L. Vasudeva. 
264 1 |a London :  |b Springer London,  |c 2006. 
300 |a VIII, 222 p. 21 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preliminaries -- Basic Concepts -- Topology of a Metric Space -- Continuity -- Connected Spaces -- Compact Spaces -- Product Spaces. 
520 |a This volume provides a complete introduction to metric space theory for undergraduates. It covers the topology of metric spaces, continuity, connectedness, compactness and product spaces, and includes results such as the Tietze-Urysohn extension theorem, Picard's theorem on ordinary differential equations, and the set of discontinuities of the pointwise limit of a sequence of continuous functions. Key features include: a full chapter on product metric spaces, including a proof of Tychonoff’s Theorem a wealth of examples and counter-examples from real analysis, sequence spaces and spaces of continuous functions numerous exercises – with solutions to most of them – to test understanding. The only prerequisite is a familiarity with the basics of real analysis: the authors take care to ensure that no prior knowledge of measure theory, Banach spaces or Hilbert spaces is assumed. The material is developed at a leisurely pace and applications of the theory are discussed throughout, making this book ideal as a classroom text for third- and fourth-year undergraduates or as a self-study resource for graduate students and researchers. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Topology. 
650 0 |a Physics. 
650 0 |a Engineering. 
650 1 4 |a Mathematics. 
650 2 4 |a Topology. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Engineering, general. 
700 1 |a Vasudeva, Harkrishan L.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781852339227 
856 4 0 |u http://dx.doi.org/10.1007/1-84628-244-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)