Neural Networks in a Softcomputing Framework

Conventional model-based data processing methods are computationally expensive and require experts’ knowledge for the modelling of a system; neural networks provide a model-free, adaptive, parallel-processing solution. Neural Networks in a Softcomputing Framework presents a thorough review of the mo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Du, K. -L (Συγγραφέας), Swamy, M. N. S. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2006.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03669nam a22005415i 4500
001 978-1-84628-303-1
003 DE-He213
005 20151204181802.0
007 cr nn 008mamaa
008 100301s2006 xxk| s |||| 0|eng d
020 |a 9781846283031  |9 978-1-84628-303-1 
024 7 |a 10.1007/1-84628-303-5  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Du, K. -L.  |e author. 
245 1 0 |a Neural Networks in a Softcomputing Framework  |h [electronic resource] /  |c by K. -L. Du, M. N. S. Swamy. 
264 1 |a London :  |b Springer London,  |c 2006. 
300 |a L, 566 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Fundamentals of Machine Learning and Softcomputing -- Multilayer Perceptrons -- Hopfield Networks and Boltzmann Machines -- Competitive Learning and Clustering -- Radial Basis Function Networks -- Principal Component Analysis Networks -- Fuzzy Logic and Neurofuzzy Systems -- Evolutionary Algorithms and Evolving Neural Networks -- Discussion and Outlook. 
520 |a Conventional model-based data processing methods are computationally expensive and require experts’ knowledge for the modelling of a system; neural networks provide a model-free, adaptive, parallel-processing solution. Neural Networks in a Softcomputing Framework presents a thorough review of the most popular neural-network methods and their associated techniques. This concise but comprehensive textbook provides a powerful and universal paradigm for information processing. Each chapter provides state-of-the-art descriptions of the important major research results of the respective neural-network methods. A range of relevant computational intelligence topics, such as fuzzy logic and evolutionary algorithms, are introduced. These are powerful tools for neural-network learning. Array signal processing problems are discussed in order to illustrate the applications of each neural-network model. Neural Networks in a Softcomputing Framework is an ideal textbook for graduate students and researchers in this field because in addition to grasping the fundamentals, they can discover the most recent advances in each of the popular models. The systematic survey of each neural-network model and the exhaustive list of references will enable researchers and students to find suitable topics for future research. The important algorithms outlined also make this textbook a valuable reference for scientists and practitioners working in pattern recognition, signal processing, speech and image processing, data analysis and artificial intelligence. 
650 0 |a Engineering. 
650 0 |a Computers. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Computation by Abstract Devices. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Pattern Recognition. 
700 1 |a Swamy, M. N. S.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781846283024 
856 4 0 |u http://dx.doi.org/10.1007/1-84628-303-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)