Automatic Autocorrelation and Spectral Analysis

Automatic Autocorrelation and Spectral Analysis gives random data a language to communicate the information they contain objectively. In the current practice of spectral analysis, subjective decisions have to be made all of which influence the final spectral estimate and mean that different analysts...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Broersen, Piet M. T. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2006.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03727nam a22005055i 4500
001 978-1-84628-329-1
003 DE-He213
005 20151204170427.0
007 cr nn 008mamaa
008 100301s2006 xxk| s |||| 0|eng d
020 |a 9781846283291  |9 978-1-84628-329-1 
024 7 |a 10.1007/1-84628-329-9  |2 doi 
040 |d GrThAP 
050 4 |a TA1-2040 
072 7 |a TBC  |2 bicssc 
072 7 |a TEC000000  |2 bisacsh 
082 0 4 |a 620  |2 23 
100 1 |a Broersen, Piet M. T.  |e author. 
245 1 0 |a Automatic Autocorrelation and Spectral Analysis  |h [electronic resource] /  |c by Piet M. T. Broersen. 
264 1 |a London :  |b Springer London,  |c 2006. 
300 |a XII, 298 p. 104 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Basic Concepts -- Periodogram and Lagged Product Autocorrelation -- ARMA Theory -- Relations for Time Series Models -- Estimation of Time Series Models -- AR Order Selection -- MA and ARMA Order Selection -- ARMASA Toolbox with Applications -- Advanced Topics in Time Series Estimation. 
520 |a Automatic Autocorrelation and Spectral Analysis gives random data a language to communicate the information they contain objectively. In the current practice of spectral analysis, subjective decisions have to be made all of which influence the final spectral estimate and mean that different analysts obtain different results from the same stationary stochastic observations. Statistical signal processing can overcome this difficulty, producing a unique solution for any set of observations but that solution is only acceptable if it is close to the best attainable accuracy for most types of stationary data. Automatic Autocorrelation and Spectral Analysis describes a method which fulfils the above near-optimal-solution criterion. It takes advantage of greater computing power and robust algorithms to produce enough candidate models to be sure of providing a suitable candidate for given data. Improved order selection quality guarantees that one of the best (and often the best) will be selected automatically. The data themselves suggest their best representation. Should the analyst wish to intervene, alternatives can be provided. Written for graduate signal processing students and for researchers and engineers using time series analysis for practical applications ranging from breakdown prevention in heavy machinery to measuring lung noise for medical diagnosis, this text offers: • tuition in how power spectral density and the autocorrelation function of stochastic data can be estimated and interpreted in time series models; • extensive support for the MATLAB® ARMAsel toolbox; • applications showing the methods in action; • appropriate mathematics for students to apply the methods with references for those who wish to develop them further. 
650 0 |a Engineering. 
650 0 |a Computers. 
650 0 |a Image processing. 
650 0 |a Statistics. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Engineering, general. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Image Processing and Computer Vision. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781846283284 
856 4 0 |u http://dx.doi.org/10.1007/1-84628-329-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)