$\mathcal{H}_\infty$ Control for Nonlinear Descriptor Systems

The authors present a study of the H-infinity control problem and related topics for descriptor systems, described by a set of nonlinear differential-algebraic equations. They derive necessary and sufficient conditions for the existence of a controller solving the standard nonlinear H-infinity contr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Wang, He-Sheng (Συγγραφέας), Yung, Chee-Fai (Συγγραφέας), Chang, Fan-Ren (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2006.
Σειρά:Lecture Notes in Control and Information Science, 326
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03105nam a22005415i 4500
001 978-1-84628-348-2
003 DE-He213
005 20151204142840.0
007 cr nn 008mamaa
008 100805s2006 xxk| s |||| 0|eng d
020 |a 9781846283482  |9 978-1-84628-348-2 
024 7 |a 10.1007/11576228  |2 doi 
040 |d GrThAP 
050 4 |a TJ210.2-211.495 
050 4 |a TJ163.12 
072 7 |a TJFM  |2 bicssc 
072 7 |a TJFD  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TEC037000  |2 bisacsh 
082 0 4 |a 629.8  |2 23 
100 1 |a Wang, He-Sheng.  |e author. 
245 1 0 |a $\mathcal{H}_\infty$ Control for Nonlinear Descriptor Systems  |h [electronic resource] /  |c by He-Sheng Wang, Chee-Fai Yung, Fan-Ren Chang. 
264 1 |a London :  |b Springer London,  |c 2006. 
300 |a XIV, 164 p. 19 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Control and Information Science,  |x 0170-8643 ;  |v 326 
505 0 |a Introduction -- Elements of Descriptor Systems Theory -- Youla Parameterization -- The H-infinity Control -- Balanced Realization -- Some Further Topics -- Conclusions -- Appendices: Generalized Algebraic Riccati Equations; Center Manifold Theory. 
520 |a The authors present a study of the H-infinity control problem and related topics for descriptor systems, described by a set of nonlinear differential-algebraic equations. They derive necessary and sufficient conditions for the existence of a controller solving the standard nonlinear H-infinity control problem considering both state and output feedback. One such condition for the output feedback control problem to be solvable is obtained in terms of Hamilton–Jacobi inequalities and a weak coupling condition; a parameterization of output feedback controllers solving the problem is also provided. All of these results are then specialized to the linear case. The derivation of state-space formulae for all controllers solving the standard H-infinity control problem for descriptor systems is proposed. Among other important topics covered are balanced realization, reduced-order controller design and mixed H2/H-infinity control. "H-infinity Control for Nonlinear Descriptor Systems" provides a comprehensive introduction and easy access to advanced topics. 
650 0 |a Engineering. 
650 0 |a System theory. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 1 4 |a Engineering. 
650 2 4 |a Control, Robotics, Mechatronics. 
650 2 4 |a Systems Theory, Control. 
700 1 |a Yung, Chee-Fai.  |e author. 
700 1 |a Chang, Fan-Ren.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781846282898 
830 0 |a Lecture Notes in Control and Information Science,  |x 0170-8643 ;  |v 326 
856 4 0 |u http://dx.doi.org/10.1007/11576228  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)