Soft Sensors for Monitoring and Control of Industrial Processes

Soft sensors are inferential estimators, drawing conclusions from process observations when hardware sensors are unavailable or unsuitable; they have an important auxiliary role in sensor validation when performance declines through senescence or fault accumulation. The non-linear behaviour exhibite...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Fortuna, Luigi (Συγγραφέας), Graziani, Salvatore (Συγγραφέας), Rizzo, Alessandro (Συγγραφέας), Xibilia, Maria G. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2007.
Σειρά:Advances in Industrial Control,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04693nam a22005895i 4500
001 978-1-84628-480-9
003 DE-He213
005 20151204172625.0
007 cr nn 008mamaa
008 100301s2007 xxk| s |||| 0|eng d
020 |a 9781846284809  |9 978-1-84628-480-9 
024 7 |a 10.1007/978-1-84628-480-9  |2 doi 
040 |d GrThAP 
050 4 |a T55.4-60.8 
072 7 |a TGP  |2 bicssc 
072 7 |a TEC009060  |2 bisacsh 
082 0 4 |a 670  |2 23 
100 1 |a Fortuna, Luigi.  |e author. 
245 1 0 |a Soft Sensors for Monitoring and Control of Industrial Processes  |h [electronic resource] /  |c by Luigi Fortuna, Salvatore Graziani, Alessandro Rizzo, Maria G. Xibilia. 
264 1 |a London :  |b Springer London,  |c 2007. 
300 |a XVIII, 271 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Industrial Control,  |x 1430-9491 
505 0 |a Soft Sensors in Industrial Applications -- Virtual Instruments and Soft Sensors -- Soft Sensor Design -- Selecting Data from Plant Database -- Choice of the Model Structure -- Model Validation -- Strategies to Improve Soft Sensor Performance -- Adapting Soft Sensors to Applications -- Fault Detection, Sensor Validation and Diagnosis. 
520 |a Soft sensors are inferential estimators, drawing conclusions from process observations when hardware sensors are unavailable or unsuitable; they have an important auxiliary role in sensor validation when performance declines through senescence or fault accumulation. The non-linear behaviour exhibited by many industrial processes can be usefully modelled with the techniques of computational intelligence: neural networks; fuzzy systems and nonlinear partial least squares. Soft Sensors for Monitoring and Control of Industrial Processes underlines the real usefulness of each approach and the sensitivity of the individual steps in soft-sensor design to the choice of one or the other. Design paths are suggested and readers shown how to evaluate the effects of their choices. All the case studies reported, resulting from collaborations between the authors and a number of industrial partners, raised challenging soft-sensor-design problems. The applications of soft sensors presented in this volume are designed to cope with the whole range from measuring system backup and what-if analysis through real-time prediction for plant control to sensor diagnosis and validation. Some of the soft sensors developed here are implemented on-line at industrial plants. Features: • soft-sensor design; • advice on data selection and choice of model structure; • model validation; • strategies for the improvement of soft-sensor performance; • uses of soft sensors in fault detection and sensor validation; • soft sensors in use in industrial applications such as a debutanizer column and a sulfur recovery unit. This monograph guides interested readers – researchers, graduate students and industrial process technologists – through the design of their own soft sensors. It is self-contained with full references and appraisal of existing literature and data sets for some of the case studies can be downloaded from springer.com. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control. 
650 0 |a Engineering. 
650 0 |a Chemical engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Control engineering. 
650 0 |a Industrial engineering. 
650 0 |a Production engineering. 
650 0 |a Electrical engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Industrial and Production Engineering. 
650 2 4 |a Control. 
650 2 4 |a Information Systems Applications (incl. Internet). 
650 2 4 |a Industrial Chemistry/Chemical Engineering. 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Graziani, Salvatore.  |e author. 
700 1 |a Rizzo, Alessandro.  |e author. 
700 1 |a Xibilia, Maria G.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781846284793 
830 0 |a Advances in Industrial Control,  |x 1430-9491 
856 4 0 |u http://dx.doi.org/10.1007/978-1-84628-480-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)