Introduction to Lie Algebras

Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. Based on a lecture course given to fourth-year undergraduates, this book provides an elementary introduction to Lie algebras. It...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Erdmann, Karin (Συγγραφέας), Wildon, Mark J. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2006.
Σειρά:Springer Undergraduate Mathematics Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03850nam a22004815i 4500
001 978-1-84628-490-8
003 DE-He213
005 20151030111204.0
007 cr nn 008mamaa
008 100301s2006 xxk| s |||| 0|eng d
020 |a 9781846284908  |9 978-1-84628-490-8 
024 7 |a 10.1007/1-84628-490-2  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Erdmann, Karin.  |e author. 
245 1 0 |a Introduction to Lie Algebras  |h [electronic resource] /  |c by Karin Erdmann, Mark J. Wildon. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2006. 
300 |a XII, 251 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
505 0 |a Ideals and Homomorphisms -- Low-Dimensional Lie Algebras -- Solvable Lie Algebras and a Rough Classification -- Subalgebras of gl(V) -- Engel’s Theorem and Lie’s Theorem -- Some Representation Theory -- Representations of sl(2, C) -- Cartan’s Criteria -- The Root Space Decomposition -- Root Systems -- The Classical Lie Algebras -- The Classification of Root Systems -- Simple Lie Algebras -- Further Directions -- Appendix A: Linear Algebra -- Appendix B: Weyl’s Theorem -- Appendix C: Cartan Subalgebras -- Appendix D: Weyl Groups -- Appendix E: Answers to Selected Exercises. 
520 |a Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. Based on a lecture course given to fourth-year undergraduates, this book provides an elementary introduction to Lie algebras. It starts with basic concepts. A section on low-dimensional Lie algebras provides readers with experience of some useful examples. This is followed by a discussion of solvable Lie algebras and a strategy towards a classification of finite-dimensional complex Lie algebras. The next chapters cover Engel's theorem, Lie's theorem and Cartan's criteria and introduce some representation theory. The root-space decomposition of a semisimple Lie algebra is discussed, and the classical Lie algebras studied in detail. The authors also classify root systems, and give an outline of Serre's construction of complex semisimple Lie algebras. An overview of further directions then concludes the book and shows the high degree to which Lie algebras influence present-day mathematics. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Mathematical Methods in Physics. 
700 1 |a Wildon, Mark J.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781846280405 
830 0 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
856 4 0 |u http://dx.doi.org/10.1007/1-84628-490-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)