Nonlinear Control in the Year 2000 Volume 2 /

Control of nonlinear systems, one of the most active research areas in control theory, has always been a domain of natural convergence of research interests in applied mathematics and control engineering. The theory has developed from the early phase of its history, when the basic tool was essential...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Isidori, Alberto (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Lamnabhi-Lagarrigue, Francoise (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Respondek, Witold (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2001.
Έκδοση:1st ed. 2001.
Σειρά:Lecture Notes in Control and Information Sciences, 259
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06635nam a2200577 4500
001 978-1-84628-569-1
003 DE-He213
005 20191021162014.0
007 cr nn 008mamaa
008 121227s2001 xxk| s |||| 0|eng d
020 |a 9781846285691  |9 978-1-84628-569-1 
024 7 |a 10.1007/BFb0110287  |2 doi 
040 |d GrThAP 
050 4 |a TJ210.2-211.495 
050 4 |a TJ163.12 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
072 7 |a TJFD  |2 thema 
082 0 4 |a 629.8  |2 23 
245 1 0 |a Nonlinear Control in the Year 2000  |h [electronic resource] :  |b Volume 2 /  |c edited by Alberto Isidori, Francoise Lamnabhi-Lagarrigue, Witold Respondek. 
250 |a 1st ed. 2001. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2001. 
300 |a XII, 628 p. 62 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Control and Information Sciences,  |x 0170-8643 ;  |v 259 
505 0 |a Control of a reduced size model of US navy crane using only motor position sensors -- Algorithms for identification of continuous time nonlinear systems: a passivity approach. Part I: Identification in open-loop operation Part II: Identification in llosed-loop operation -- Flatness-based boundary control of a nonlinear parabolic equation modelling a tubular reactor -- Dynamic feedback transformations of controllable linear time-varying systems -- Asymptotic controllability implies continuous-discrete time feedback stabilizability -- Stabilisation of nonlinear systems by discontinuous dynamic state feedback -- On the stabilization of a class of uncertain systems by bounded control -- Adaptive nonlinear excitation control of synchronous generators with unknown mechanical power -- Nonlinear observers of time derivatives from noisy measurements of periodic signals -- Hamiltonian representation of distributed parameter systems with boundary energy flow -- Differentiable lyapunov function and center manifold theory -- Controlling self-similar traffic and shaping techniques -- Diffusive representation for pseudo-differentially damped nonlinear systems -- Euler's discretization and dynamic equivalence of nonlinear control systems -- Singular systems in dimension 3: Cuspidal case and tangent elliptic flat case -- Flatness of nonlinear control systems and exterior differential systems -- Motion planning for heavy chain systems -- Control of an industrial polymerization reactor using flatness -- Controllability of nonlinear multidimensional control systems -- Stabilization of a series DC motor by dynamic output feedback -- Stabilization of nonlinear systems via forwarding mod{L g V} -- A robust globally asymptotically stabilizing feedback: The example of the artstein's circles -- Robust stabilization for the nonlinear benchmark problem (TORA) using neural nets and evolution strategies -- On convexity in stabilization of nonlinear systems -- Extended goursat normal form: a geometric characterization -- Trajectory tracking for ?-flat nonlinear delay systems with a motor example -- Neuro-genetic robust regulation design for nonlinear parameter dependent systems -- Stability criteria for time-periodic systems via high-order averaging techniques -- Control of nonlinear descriptor systems, a computer algebra based approach -- Vibrational control of singularly perturbed systems -- Recent advances in output regulation of nonlinear systems -- Sliding mode control of the prismatic-prismatic-revolute mobile robot with a flexible joint -- The ISS philosophy as a unifying framework for stability-like behavior -- Control design of a crane for offshore lifting operations -- New theories of set-valued differentials and new versions of the maximum principle of optimal control theory -- Transforming a single-input nonlinear system to a strict feedforward form via feedback -- Extended active-passive decomposition of chaotic systems with application to the modelling and control of synchronous motors -- On canonical decomposition of nonlinear dynamic systems -- New developments in dynamical adaptive backstepping control. 
520 |a Control of nonlinear systems, one of the most active research areas in control theory, has always been a domain of natural convergence of research interests in applied mathematics and control engineering. The theory has developed from the early phase of its history, when the basic tool was essentially only the Lyapunov second method, to the present day, where the mathematics ranges from differential geometry, calculus of variations, ordinary and partial differential equations, functional analysis, abstract algebra and stochastic processes, while the applications to advanced engineering design span a wide variety of topics, which include nonlinear controllability and observability, optimal control, state estimation, stability and stabilization, feedback equivalence, motion planning, noninteracting control, disturbance attenuation, asymptotic tracking. The reader will find in the book methods and results which cover a wide variety of problems: starting from pure mathematics (like recent fundamental results on (non)analycity of small balls and the distance function), through its applications to all just mentioned topics of nonlinear control, up to industrial applications of nonlinear control algorithms. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Control, Robotics, Mechatronics.  |0 http://scigraph.springernature.com/things/product-market-codes/T19000 
650 2 4 |a Mathematical and Computational Engineering.  |0 http://scigraph.springernature.com/things/product-market-codes/T11006 
700 1 |a Isidori, Alberto.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Lamnabhi-Lagarrigue, Francoise.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Respondek, Witold.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781852333645 
776 0 8 |i Printed edition:  |z 9781447139669 
830 0 |a Lecture Notes in Control and Information Sciences,  |x 0170-8643 ;  |v 259 
856 4 0 |u https://doi.org/10.1007/BFb0110287  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
912 |a ZDB-2-LNI 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647)