Metric Spaces

The abstract concepts of metric ces are often perceived as difficult. This book offers a unique approach to the subject which gives readers the advantage of a new perspective familiar from the analysis of a real line. Rather than passing quickly from the definition of a metric to the more abstract c...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Searcóid, Mícheál Ó. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2007.
Σειρά:Springer Undergraduate Mathematics Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03430nam a22004935i 4500
001 978-1-84628-627-8
003 DE-He213
005 20151204140650.0
007 cr nn 008mamaa
008 100301s2007 xxk| s |||| 0|eng d
020 |a 9781846286278  |9 978-1-84628-627-8 
024 7 |a 10.1007/978-1-84628-627-8  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Searcóid, Mícheál Ó.  |e author. 
245 1 0 |a Metric Spaces  |h [electronic resource] /  |c by Mícheál Ó Searcóid. 
264 1 |a London :  |b Springer London,  |c 2007. 
300 |a XX, 304 p. 102 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
505 0 |a Metrics -- Distance -- Boundary -- Open, Closed and Dense Subsets -- Balls -- Convergence -- Bounds -- Continuity -- Uniform Continuity -- Completeness -- Connectedness -- Compactness -- Equivalence. 
520 |a The abstract concepts of metric ces are often perceived as difficult. This book offers a unique approach to the subject which gives readers the advantage of a new perspective familiar from the analysis of a real line. Rather than passing quickly from the definition of a metric to the more abstract concepts of convergence and continuity, the author takes the concrete notion of distance as far as possible, illustrating the text with examples and naturally arising questions. Attention to detail at this stage is designed to prepare the reader to understand the more abstract ideas with relative ease. The book goes on to provide a thorough exposition of all the standard necessary results of the theory and, in addition, includes selected topics not normally found in introductory books, such as: the Tietze Extension Theorem; the Hausdorff metric and its completeness; and the existence of curves of minimum length. Other features include: end-of-chapter summaries and numerous exercises to reinforce what has been learnt; extensive cross-referencing to help the reader follow arguments; a Cumulative Reference Chart, showing the dependencies throughout the book on a section-by-section basis as an aid to course design. The book is designed for third- and fourth-year undergraduates and beginning graduates. Readers should have some practical knowledge of differential and integral calculus and have completed a first course in real analysis. With its many examples, careful illustrations, and full solutions to selected exercises, this book provides a gentle introduction that is ideal for self-study and an excellent preparation for applications. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Functional analysis. 
650 0 |a Topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Topology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781846283697 
830 0 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
856 4 0 |u http://dx.doi.org/10.1007/978-1-84628-627-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)