Simulation-based Algorithms for Markov Decision Processes

Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences. It is well-known that many real-world problems modeled by MDPs have huge state and/or action spaces, leading to the n...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Chang, Hyeong Soo (Συγγραφέας), Hu, Jiaqiao (Συγγραφέας), Fu, Michael C. (Συγγραφέας), Marcus, Steven I. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2007.
Σειρά:Communications and Control Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04354nam a22006135i 4500
001 978-1-84628-690-2
003 DE-He213
005 20151204175852.0
007 cr nn 008mamaa
008 100301s2007 xxk| s |||| 0|eng d
020 |a 9781846286902  |9 978-1-84628-690-2 
024 7 |a 10.1007/978-1-84628-690-2  |2 doi 
040 |d GrThAP 
050 4 |a HD30.23 
072 7 |a KJT  |2 bicssc 
072 7 |a KJMD  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
082 0 4 |a 658.40301  |2 23 
100 1 |a Chang, Hyeong Soo.  |e author. 
245 1 0 |a Simulation-based Algorithms for Markov Decision Processes  |h [electronic resource] /  |c by Hyeong Soo Chang, Jiaqiao Hu, Michael C. Fu, Steven I. Marcus. 
264 1 |a London :  |b Springer London,  |c 2007. 
300 |a XVIII, 189 p. 38 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Communications and Control Engineering,  |x 0178-5354 
505 0 |a Markov Decision Processes -- Multi-stage Adaptive Sampling Algorithms -- Population-based Evolutionary Approaches -- Model Reference Adaptive Search -- On-line Control Methods via Simulation. 
520 |a Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences. It is well-known that many real-world problems modeled by MDPs have huge state and/or action spaces, leading to the notorious curse of dimensionality that makes practical solution of the resulting models intractable. In other cases, the system of interest is complex enough that it is not feasible to specify some of the MDP model parameters explicitly, but simulation samples are readily available (e.g., for random transitions and costs). For these settings, various sampling and population-based numerical algorithms have been developed recently to overcome the difficulties of computing an optimal solution in terms of a policy and/or value function. Specific approaches include: • multi-stage adaptive sampling; • evolutionary policy iteration; • evolutionary random policy search; and • model reference adaptive search. Simulation-based Algorithms for Markov Decision Processes brings this state-of-the-art research together for the first time and presents it in a manner that makes it accessible to researchers with varying interests and backgrounds. In addition to providing numerous specific algorithms, the exposition includes both illustrative numerical examples and rigorous theoretical convergence results. The algorithms developed and analyzed differ from the successful computational methods for solving MDPs based on neuro-dynamic programming or reinforcement learning and will complement work in those areas. Furthermore, the authors show how to combine the various algorithms introduced with approximate dynamic programming methods that reduce the size of the state space and ameliorate the effects of dimensionality. The self-contained approach of this book will appeal not only to researchers in MDPs, stochastic modeling and control, and simulation but will be a valuable source of instruction and reference for students of control and operations research. 
650 0 |a Business. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Algorithms. 
650 0 |a System theory. 
650 0 |a Management science. 
650 0 |a Probabilities. 
650 0 |a Control engineering. 
650 1 4 |a Business and Management. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Control. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Operations Research, Management Science. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
700 1 |a Hu, Jiaqiao.  |e author. 
700 1 |a Fu, Michael C.  |e author. 
700 1 |a Marcus, Steven I.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781846286896 
830 0 |a Communications and Control Engineering,  |x 0178-5354 
856 4 0 |u http://dx.doi.org/10.1007/978-1-84628-690-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)