Natural Language Processing and Text Mining

With the increasing importance of the Web and other text-heavy application areas, the demands for and interest in both text mining and natural language processing (NLP) have been rising. Researchers in text mining have hoped that NLP—the attempt to extract a fuller meaning representation from free t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kao, Anne (Επιμελητής έκδοσης), Poteet, Stephen R. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2007.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04579nam a22005295i 4500
001 978-1-84628-754-1
003 DE-He213
005 20151204154939.0
007 cr nn 008mamaa
008 100301s2007 xxk| s |||| 0|eng d
020 |a 9781846287541  |9 978-1-84628-754-1 
024 7 |a 10.1007/978-1-84628-754-1  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UNH  |2 bicssc 
072 7 |a UND  |2 bicssc 
072 7 |a COM030000  |2 bisacsh 
082 0 4 |a 025.04  |2 23 
245 1 0 |a Natural Language Processing and Text Mining  |h [electronic resource] /  |c edited by Anne Kao, Stephen R. Poteet. 
264 1 |a London :  |b Springer London,  |c 2007. 
300 |a XII, 265 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Overview -- Extracting Product Features and Opinions from Reviews -- Extracting Relations from Text: From Word Sequences to Dependency Paths -- Mining Diagnostic Text Reports by Learning to Annotate Knowledge Roles -- A Case Study in Natural Language Based Web Search -- Evaluating Self-Explanations in iSTART: Word Matching, Latent Semantic Analysis, and Topic Models -- Textual Signatures: Identifying Text-Types Using Latent Semantic Analysis to Measure the Cohesion of Text Structures -- Automatic Document Separation: A Combination of Probabilistic Classification and Finite-State Sequence Modeling -- Evolving Explanatory Novel Patterns for Semantically-Based Text Mining -- Handling of Imbalanced Data in Text Classification: Category-Based Term Weights -- Automatic Evaluation of Ontologies -- Linguistic Computing with UNIX Tools. 
520 |a With the increasing importance of the Web and other text-heavy application areas, the demands for and interest in both text mining and natural language processing (NLP) have been rising. Researchers in text mining have hoped that NLP—the attempt to extract a fuller meaning representation from free text—can provide useful improvements to text mining applications of all kinds. Bringing together a variety of perspectives from internationally renowned researchers, Natural Language Processing and Text Mining not only discusses applications of certain NLP techniques to certain Text Mining tasks, but also the converse, i.e., use of Text Mining to facilitate NLP. It explores a variety of real-world applications of NLP and text-mining algorithms in comprehensive detail, placing emphasis on the description of end-to-end solutions to real problems, and detailing the associated difficulties that must be resolved before the algorithm can be applied and its full benefits realized. In addition, it explores a number of cutting-edge techniques and approaches, as well as novel ways of integrating various technologies. Nevertheless, even readers with only a basic knowledge of data mining or text mining will benefit from the many illustrative examples and solutions. Topics and features: • Describes novel and high-impact text mining and/or natural language applications • Points out typical traps in trying to apply NLP to text mining • Illustrates preparation and preprocessing of text data – offering practical issues and examples • Surveys related supporting techniques, problem types, and potential technique enhancements • Examines the interaction of text mining and NLP This state-of-the-art, practical volume will be an essential resource for professionals and researchers who wish to learn how to apply text mining and language processing techniques to real world problems. In addition, it can be used as a supplementary text for advanced students studying text mining and NLP. 
650 0 |a Computer science. 
650 0 |a Microprocessors. 
650 0 |a Computers. 
650 0 |a Information storage and retrieval. 
650 0 |a Computational linguistics. 
650 1 4 |a Computer Science. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Computing Methodologies. 
650 2 4 |a Computational Linguistics. 
650 2 4 |a Processor Architectures. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Information Systems Applications (incl. Internet). 
700 1 |a Kao, Anne.  |e editor. 
700 1 |a Poteet, Stephen R.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781846281754 
856 4 0 |u http://dx.doi.org/10.1007/978-1-84628-754-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)