Sturm-Liouville Theory and its Applications

Undergraduate textbooks on Fourier series which follow a pointwise approach to convergence miss the rich geometric content which comes with treating the subject within the inner product space L2. This book, developed from a course taught to senior undergraduates, provides a unified introduction to F...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Al-Gwaiz, M. A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2008.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03551nam a22005535i 4500
001 978-1-84628-972-9
003 DE-He213
005 20151204164655.0
007 cr nn 008mamaa
008 100301s2008 xxk| s |||| 0|eng d
020 |a 9781846289729  |9 978-1-84628-972-9 
024 7 |a 10.1007/978-1-84628-972-9  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Al-Gwaiz, M. A.  |e author. 
245 1 0 |a Sturm-Liouville Theory and its Applications  |h [electronic resource] /  |c by M. A. Al-Gwaiz. 
264 1 |a London :  |b Springer London,  |c 2008. 
300 |a X, 264 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Inner Product Space -- The Sturm–Liouville Theory -- Fourier Series -- Orthogonal Polynomials -- Bessel Functions -- The Fourier Transformation -- The Laplace Transformation. 
520 |a Undergraduate textbooks on Fourier series which follow a pointwise approach to convergence miss the rich geometric content which comes with treating the subject within the inner product space L2. This book, developed from a course taught to senior undergraduates, provides a unified introduction to Fourier analysis and special functions based on the Sturm-Liouville theory in L2. The basic results of this theory, namely the orthogonality and completeness of its eigenfunctions, are established in Chapter 2; the remaining chapters present examples and applications. The last two chapters, on Fourier and Laplace transformations, while not part of the Sturm-Liouville theory, extend the Fourier series method for representing functions to integral representations. The treatment relies heavily on the convergence properties of sequences and series of numbers as well as functions, and assumes a solid background in advanced calculus and an acquaintance with ordinary differential equations and linear algebra. Familiarity with the relevant theorems of real analysis, such as the Ascoli–Arzelà theorem, is also useful for following the proofs. The presentation follows a clear and rigorous mathematical style that is both readable and well motivated, with many examples and applications used to illustrate the theory. Although addressed primarily to undergraduate students of mathematics, the book will also be of interest to students in related disciplines, such as physics and engineering, where Fourier analysis and special functions are used extensively for solving linear differential equations. . 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Functional analysis. 
650 0 |a Differential equations. 
650 0 |a Special functions. 
650 0 |a Physics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Special Functions. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781846289712 
856 4 0 |u http://dx.doi.org/10.1007/978-1-84628-972-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)