Geometric Algebra for Computer Graphics

Since its invention, geometric algebra has been applied to various branches of physics such as cosmology and electrodynamics, and is now being embraced by the computer graphics community where it is providing new ways of solving geometric problems. It took over two thousand years to discover this al...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Vince, John (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2008.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03280nam a22004815i 4500
001 978-1-84628-997-2
003 DE-He213
005 20151204153011.0
007 cr nn 008mamaa
008 100301s2008 xxk| s |||| 0|eng d
020 |a 9781846289972  |9 978-1-84628-997-2 
024 7 |a 10.1007/978-1-84628-997-2  |2 doi 
040 |d GrThAP 
050 4 |a T385 
072 7 |a UML  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
082 0 4 |a 006.6  |2 23 
100 1 |a Vince, John.  |e author. 
245 1 0 |a Geometric Algebra for Computer Graphics  |h [electronic resource] /  |c by John Vince. 
264 1 |a London :  |b Springer London,  |c 2008. 
300 |a XVI, 256 p. 125 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Elementary Algebra -- Complex Algebra -- Vector Algebra -- Quaternion Algebra -- Geometric Conventions -- Geometric Algebra -- The Geometric Product -- Reflections and Rotations -- Geometric Algebra and Geometry -- Conformal Geometry -- Applications of Geometric Algebra -- Programming Tools for Geometric Algebra -- Conclusion. 
520 |a Since its invention, geometric algebra has been applied to various branches of physics such as cosmology and electrodynamics, and is now being embraced by the computer graphics community where it is providing new ways of solving geometric problems. It took over two thousand years to discover this algebra, which uses a simple and consistent notation to describe vectors and their products. John Vince (best-selling author of a number of books including ‘Geometry for Computer Graphics’ and ‘Vector Analysis for Computer Graphics’) tackles this new subject in his usual inimitable style, and provides an accessible and very readable introduction. The first five chapters review the algebras of real numbers, complex numbers, vectors, and quaternions and their associated axioms, together with the geometric conventions employed in analytical geometry. As well as putting geometric algebra into its historical context, John Vince provides chapters on Grassmann’s outer product and Clifford’s geometric product, followed by the application of geometric algebra to reflections, rotations, lines, planes and their intersection. The conformal model is also covered, where a 5D Minkowski space provides an unusual platform for unifying the transforms associated with 3D Euclidean space. Filled with lots of clear examples and useful illustrations, this compact book provides an excellent introduction to geometric algebra for computer graphics. 
650 0 |a Computer science. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Computer graphics. 
650 0 |a Algebraic geometry. 
650 0 |a Geometry. 
650 1 4 |a Computer Science. 
650 2 4 |a Computer Graphics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Math Applications in Computer Science. 
650 2 4 |a Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781846289965 
856 4 0 |u http://dx.doi.org/10.1007/978-1-84628-997-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)