Isomonodromic Deformations and Frobenius Manifolds An Introduction /

The notion of a Frobenius structure on a complex analytic manifold appeared at the end of the seventies in the theory of singularities of holomorphic functions. Motivated by physical considerations, further development of the theory has opened new perspectives on, and revealed new links between, man...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Sabbah, Claude (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2008.
Σειρά:Universitext
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03118nam a22004695i 4500
001 978-1-84800-054-4
003 DE-He213
005 20151204145558.0
007 cr nn 008mamaa
008 100301s2008 xxk| s |||| 0|eng d
020 |a 9781848000544  |9 978-1-84800-054-4 
024 7 |a 10.1007/978-1-84800-054-4  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 |a Sabbah, Claude.  |e author. 
245 1 0 |a Isomonodromic Deformations and Frobenius Manifolds  |h [electronic resource] :  |b An Introduction /  |c by Claude Sabbah. 
264 1 |a London :  |b Springer London,  |c 2008. 
300 |a XIV, 279 p. 10 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext 
505 0 |a The language of fibre bundles -- Holomorphic vector bundles on the Riemann sphere -- The Riemann-Hilbert correspondence on a Riemann surface -- Lattices -- The Riemann-Hilbert problem and Birkhoff’s problem -- Fourier-Laplace duality -- Integrable deformations of bundles with connection on the Riemann sphere -- Saito structures and Frobenius structures on a complex analytic manifold. 
520 |a The notion of a Frobenius structure on a complex analytic manifold appeared at the end of the seventies in the theory of singularities of holomorphic functions. Motivated by physical considerations, further development of the theory has opened new perspectives on, and revealed new links between, many apparently unrelated areas of mathematics and physics. Based on a series of graduate lectures, this book provides an introduction to algebraic geometric methods in the theory of complex linear differential equations. Starting from basic notions in complex algebraic geometry, it develops some of the classical problems of linear differential equations and ends with applications to recent research questions related to mirror symmetry. The fundamental tool used within the book is that of a vector bundle with connection. There is a detailed analysis of the singularities of such objects and of their deformations, and coverage of the techniques used in the resolution of the Riemann-Hilbert problem and Birkhoff’s problem. An approach to Frobenius manifolds using isomonodromic deformations of linear differential equations is also developed. Aimed at graduate students and researchers, the book assumes some familiarity with basic complex algebraic geometry. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Algebraic geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Mathematics, general. 
650 2 4 |a Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781848000537 
830 0 |a Universitext 
856 4 0 |u http://dx.doi.org/10.1007/978-1-84800-054-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)